
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Model checking techniques for vulnerability
analysis of Web applications
Michelle Elaine Ruse
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ruse, Michelle Elaine, "Model checking techniques for vulnerability analysis of Web applications" (2013). Graduate Theses and
Dissertations. 13211.
https://lib.dr.iastate.edu/etd/13211

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13211?utm_source=lib.dr.iastate.edu%2Fetd%2F13211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Model checking techniques for vulnerability analysis of Web applications

by

Michelle Elaine Ruse

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Samik Basu, Major Professor

David Fernández-Baca

Arka P. Ghosh

Robyn Lutz

Hridesh Rajan

Iowa State University

Ames, Iowa

2013

Copyright c© Michelle Elaine Ruse, 2013. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this dissertation to my amazing daughter Morgana who was there

to encourage me to move forward through every obstacle with her hugs and wisdom beyond

her years.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 First Order SQL Injection Attacks . 3

1.2 First Order Cross-Site Scripting Attacks . 6

1.3 Contributions . 8

1.4 Organization . 8

CHAPTER 2. CLASSIFICATION OF FIRST ORDER RELATED WORKS 9

2.1 Introduction . 9

2.2 Classification of First Order Vulnerability and Attack detection methods 12

2.2.1 Detection Type . 12

2.2.2 Detection Method . 14

2.2.3 Granularity . 15

2.2.4 Location . 16

2.2.5 Level of Automation . 16

2.2.6 Test Case Source . 17

2.3 Classifications of related works . 18

2.3.1 Testing . 19

2.3.2 Program analysis . 23

2.3.3 Model checking . 26

www.manaraa.com

iv

2.3.4 Code re-write . 29

2.3.5 Structural matching . 32

2.3.6 Taint analysis . 36

2.3.7 Proxy . 37

2.3.8 Browser-based . 39

2.3.9 Penetration testing . 41

2.3.10 Blackbox testing . 42

2.3.11 Other techniques . 43

2.4 Summary . 44

2.4.1 Classifications . 44

2.4.2 Techniques . 46

2.4.3 Conclusions . 48

CHAPTER 3. ANALYSIS & DETECTION OF SQL INJECTION VUL-

NERABILITIES VIA AUTOMATIC TEST CASE GENERATION OF

PROGRAMS . 50

3.1 Introduction . 51

3.2 A method for detecting SQL injection vulnerabilities 53

3.2.1 Translating SQL query conditions to C-programs 54

3.2.2 Application of CREST . 59

3.2.3 Causal set detection: reductions . 60

3.3 Method evaluation . 64

3.4 Conclusions . 65

CHAPTER 4. DETECTING CROSS-SITE SCRIPTING VULNERABIL-

ITY USING CONCOLIC TESTING . 66

4.1 Introduction to Cross-Site Scripting . 67

4.2 A method for detecting Cross-Site Scripting vulnerabilities and implementing

attack prevention . 69

4.2.1 Preprocessing . 71

www.manaraa.com

v

4.2.2 Translation . 72

4.2.3 Testing for determining vulnerable outputs 75

4.2.4 Instrumentation for detecting Cross-Site Scripting attacks 77

4.3 Case Studies . 77

4.4 Conclusions . 79

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 80

5.1 Summary and contributions . 80

5.2 Extension to Second Order Injection Attacks 82

BIBLIOGRAPHY . 87

www.manaraa.com

vi

LIST OF TABLES

Table 1.1 Acronym definitions . 1

Table 2.1 First Order SQLID Works by Technique 19

Table 2.2 First Order XSSD Works by Technique 20

Table 2.3 Summary of classified First Order SQLID countermeasures by year . . 21

Table 4.1 GotoCode Projects Tested . 78

Table 4.2 Online Bookstore Variables . 79

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 Example query with dependent sub-query 5

Figure 1.2 Facebook’s XSS vulnerability of 2008 7

Figure 2.1 Classification of Injection Attack Detection methods 12

Figure 3.1 SQL query with nested sub-query . 55

Figure 3.2 (a) Possible execution tree of Translate; (b) Result of translation; (c)

Partial execution graph explored by CREST. 58

Figure 3.3 Requirements . 61

Figure 3.4 3-valued Decision Tree . 62

Figure 3.5 3-valued Decision Diagram . 62

Figure 3.6 Rules for (a) redundant tree removal; (b) generalization of test values;

(c) removal of duplicate test values . 63

Figure 3.7 SQL query with UNION . 65

Figure 4.1 Approach overview . 69

Figure 4.2 Illustrative example JSP code: welcomePage.jsp 70

Figure 4.3 Mapping for JSP to Java translation 71

Figure 4.4 Grammar for adapting Java String to char arrays 73

Figure 4.5 Illustrative example code converted to Java: welcomePage.java 74

Figure 4.6 Finite state automaton representing vulnerable output 75

Figure 5.1 (a) Direct Single Injection Attack; (b) Direct Multiple Injection Attacks;

(c) Indirect Injection Attacks . 83

Figure 5.2 Second Order SQL Injection Vulnerability Detection 85

www.manaraa.com

viii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this dissertation. First and foremost,

I am grateful to Dr. Samik Basu for his guidance, immense patience, and support throughout

the research and the writing of this dissertation. I would also like to thank my committee

members for their efforts and contributions to this work: Dr. David Fernández-Baca, Dr. Arka

P. Ghosh, Dr. Rajan Hridesh, and Dr. Robyn Lutz. I especially want to thank Dr. Robyn

Lutz for her wisdom, guidance and encouragement that helped me realize my setbacks were

not insurmountable. Special thanks to my devoted lab-mates, Tanmoy Sarkar, Zach Oster

(Benevolent Overlord of LaTeX), and Youssef Hanna for their help and encouragement and my

wonderful professors during my course work, Dr. Pavan Aduri, Dr. Samik Basu, Dr. Oliver

Eulenstein, Dr. David Fernández-Baca, Dr. Shashi Gadia, Dr. Vasant Honavar, Dr. Yan-Bin

Jia, Dr. Leslie Miller, Dr. Hridesh Rajan, Dr. Gurpur Prabhu, and Dr. Srinivas Aluru. Big

thanks to Linda Dutton, the best graduate secretary even during retirement and a dear friend.

I would like to thank my Grams who has been there for me my entire life, my family,

friends, Grand View University family and Luther Memorial Church family for their patience

and understanding during the writing of this work. “Are you done yet?” is my least favorite

phrase, but I know it was asked it out of concern and love. A special thanks to D.L., for

reminding me to take care of myself and patiently helping through the final stretch. Finally, I

am thankful for my Divine Creator, in whom all things are possible.

www.manaraa.com

ix

ABSTRACT

Injection Attacks exploit vulnerabilities of Web pages by inserting and executing malicious

code (e.g., database query, Javascript functions) in unsuspecting users’ computing environment

or on a Web server. Such attacks compromise users’ information and system resources, and pose

a serious threat to personal and business assets. Methods have been devised to counter attacks

and/or detect vulnerabilities to injection attacks in queries and/or in application source code.

We define a classification for these query and application level methods and use this to classify

a representative body of works that address injection attacks. We investigate and develop a

framework where queries and vulnerable fragments of applications (written in query and appli-

cation languages) are identified and analyzed offline (statically), and at runtime the vulnerable

fragments are monitored to detect possible injection attacks. At its core, our framework lever-

ages model checking, program analysis and concolic testing. Results show the effectiveness of

our framework compared to the existing ones in three dimensions: first, our framework can

detect vulnerabilities that go undetected when existing methods are used; second, our frame-

work makes offline analysis of applications time efficient; and finally, our framework reduces the

runtime monitoring overhead by focusing only on query conditions and application fragments

that are vulnerable to injection attacks.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Table 1.1 Acronym definitions

SQLI SQL Injection XSS Cross-Site Scripting

SQLIV SQL Injection Vulnerability XSSV Cross-Site Scripting Vulnerability

SQLIA SQL Injection Attack XSSA Cross-Site Scripting Attack

SQLID SQLIV and SQLIA Detection XSSD XSSV and XSSA Detection

IA Injection Attacks FOID First Order Injection Detection

Security is a prevalent concern to businesses with a Web presence and to everyday users.

The Web serves as a convenient portal between end-users and company resources such as user

accounts. A Web application is a computer program that allows end-users to interact with

a Web server by sending and receiving data, possibly accessing a database or other system

resources, via a browser. Such applications that facilitate a rich online experience (personal

financing, social networking, business transactions, et cetera) are burdened with securing the

privacy of sensitive data while permitting data exchange. A Web application accepting input

is vulnerable to the class of attacks known as injection attacks, which include SQL Injection

and Cross-Site Scripting attacks.

Injection attacks top the OWASP Top 10 - 2010: The Top Ten Most Critical Web Ap-

plication Security Risks list published by the Open Web Application Security Project (2010 is

its latest version) [1]. They are classified into two categories: reflected and stored, (also called

immediate and persistent, respectively, and First Order and Second Order Attacks, respec-

tively). Reflected attacks are immediate and maliciously disclose useful information resulting

directly from the injection within a Web browsing session. Stored attacks can have a broader

victim base. They can be saved by an attacker during a session, then persist in the datastore to

www.manaraa.com

2

be later retrieved by any number of unsuspecting users during their respective Web browsing

sessions. In this thesis, we primarily focus on reflected, or First Order, injection attacks, and

specifically SQL Injection and Cross-Site Scripting attacks.

Injection attacks occur when input passes from the browser to the server application,

possibly onto the database and even back to the user’s browser; and this input contains mali-

cious values/scripts that can alter the behavior of the Web application and cause unexpected

results. A typical successful attack begins in the client-side browser where a Web application

is rendered, giving an attacker opportunity to input malicious data via the browser. This data

is then sent to the server, where it may reach the back-end database via a query, resulting in a

SQL Injection attack, or it may be sent back to the attacker’s client-side browser for execution,

resulting in a Cross-Site Scripting Attack. These attacks can return sensitive information or

give unauthorized access to system resources immediately, as these are First Order attacks.

Second Order attacks can victimize on an unsuspecting user when the previously stored mali-

cious data is retrieved and becomes part of a query or the rendered Web page. One extreme

measure to counter such attacks would be to disallow any user input to Web applications; such

a measure is impractical for any Web application that interacts with end-users. A Web appli-

cation without input has very limited functionality, it does not have the ability to query the

user in order to display pertinent information. Thus, there is no access to back-end databases

to retrieve personal information (e.g., a bank account balance) nor is there the capability to

perform transactions (e.g., online bill pay). Therefore, the primary measure for countering in-

jection attack involves identifying possible malicious inputs and altering them, thus rendering

them benign. This is referred to as the sanitization method.

Sanitization methods can be fallible or lack the inclusiveness sufficient to thwart all at-

tacks. For example, sanitization methods for SQL Injection Attacks may inspect input intended

for inclusion in a SQL query or the query itself for the insertion of unexpected SQL keywords

and remove them. The ubiquitous injection string “’ OR ‘1’=‘1’--” adds the SQL keyword

“OR” to create a tautology-based attack (described later in this chapter). These sanitization

www.manaraa.com

3

methods will fail to detect attacks that do not inject a keyword. Cross-Site Scripting attacks

occur when a script is injected and executed on a victim’s browser (typically containing the

keyword “script”). The goal of a sanitization method might be removal of keywords. Malicious

users could discover and circumvent this removal. They could create a string that will contain

“script” after an instance of “script” is removed. The injected string could flank “script” with

“scr” and “ipt”: “scrscriptipt”. Similarly, persistent malicious users can bypass other sanitiza-

tion tactics (e.g., encoding symbols commonly used in attacks). Thus, the use of sanitization

methods alone will not ensure safety from injection attacks.

With universal Web-based access to sensitive information and resources, the prevalent

threat of injection attacks must be acknowledged and addressed. Measures to detect and

prevent attacks are a way to respond to the threat. Another is to detect code that is vulnerable

and remove the vulnerability or add monitoring mechanisms prior to deployment. To better

protect information and resources from this type of attack, we must understand the attacks

and current countermeasures against them. Such knowledge can inform development of new

methodologies to mitigate threats.

The rest of this chapter is organized as follows. Section 1.1 describes First Order SQL

Injection and briefly introduces detection methods. Similarly, Section 1.2 discusses Cross-Site

Scripting and its detection methods. Section 1.3 defines the contributions of this thesis. Finally,

Section 1.4 details the remainder of the chapters.

1.1 First Order SQL Injection Attacks

A SQL Injection Attack occurs when malicious data is injected into a database query, via

Web page input, to gain sensitive information from or unauthorized access to system resources

(e.g., a database). SQL Injection Attack (SQLIA) refers to the situation when such injection

occurs via a SQL query, i.e., when malicious data value(s) and/or code is input into a Web

page and subsequently injected into a SQL query. SQL Injection Vulnerability (SQLIV) refers

www.manaraa.com

4

to weaknesses in the Web application source code (or the query itself) susceptible to such

injections. SQLIAs occur when there are SQLIVs that are not adequately monitored in the

source code. SQL Injection Detection (SQLID) can endeavor to determine SQLIV, SQLIA or

both.

A simple SQL query example which takes which takes input $name and $password is the

following: SELECT * FROM Users WHERE name = $name AND password = $password. Each

input is contained in the WHERE clause and in a condition (e.g., condition1 is “name

= $name”). If the Web application source code allows user input from the browser to be

assigned to $name and/or $password without adequate sanitization, this query can be in-

jected with malicious code and an attack can be created. When user input leads to “$name

= ’ OR ‘1’=‘1’--”, the first condition in the WHERE clause becomes “name = ‘’ OR

‘1’=‘1’--’”. Thus, the WHERE clause now contains a tautology “name = ‘’ OR ‘1’=‘1’”.

Furthermore, the second condition in WHERE clause “password = $password” is ignored

during the evaluation of the clause conditions, since it follows the injected comment symbols

“--”. The end result is Users table can be accessed without proper authorization (matching

name and password), since the WHERE clause is always true without matching name or pass-

word. This simple query with malicious string “’ OR ‘1’=‘1’--” injected via $name now be-

comes SELECT * FROM Users WHERE name = ‘’ OR ‘1’=‘1’--’ AND password = ‘’. The

role of SQLID methods is to try to identify the vulnerability that allows the injection into the

variable $name or the malicious data that causes the attack “’ OR ‘1’=‘1’--’”.

This is one example of the class of attacks known as SQL Injection. Methods have been

proposed to detect SQL Injection attacks and vulnerabilities, with some methods removing

the vulnerability or thwarting the attack. Generally categorized in the body of works ad-

dressing SQL Injection, methods are static [2, 3], dynamic [4, 5, 6, 7], or a combination of

the two [8, 9, 10, 11, 12, 13]. These static code analyses typically detect vulnerabilities, not

actual attacks. Attacks and/or vulnerabilities are detected by the dynamic and combination

techniques. Chapter 2 contains a detailed classification of these works.

www.manaraa.com

5

SELECT username, password FROM Users

WHERE lastname = $lastname AND firstname = $firstname AND

$status IN (SELECT statuses FROM STATUS

WHERE pid = $pid OR pname = $pname)

Figure 1.1 Example query with dependent sub-query

In some works structure change is used to detect vulnerabilities and/or attacks. In the

simple query SELECT * FROM Users WHERE name = $name AND password = $password, the

WHERE clause’s condition1 (name = $name) AND condition2 (password = $password) is

replaced by condition1 (name = ‘’) OR condition2 (‘1’=‘1’) and appended with a comment

(“--”) which contains the AND and intended condition2. Techniques detecting an unexpected

structure (e.g., parse trees [14, 4, 15]) will find this vulnerability/attack. Others find it with

source code program analysis [2, 16, 17, 18, 11], code re-writes [9, 19, 20, 21], model check-

ing [10, 22, 23, 24, 25, 26, 8], testing [5, 27, 13, 3, 28], and proxy use [29]. However, a query’s

intended structure need not be modified to create a tautology and launch a tautology-based

attack.

The example query in Figure 1.1 contains a nested sub-query and is vulnerable to non-

structure altering tautology-based SQL Injection. A domain-safe input (e.g., expected data-

type and/or expected value range) for the variable $status could cause a tautology in the

WHERE clause of the main query (as long as $lastname and $firstname do not create

contradictions). Thus, the vulnerability lies in the nested subquery condition clause and its

susceptibility to becoming a tautology.

We propose a solution in Chapter 3 that will find tautology-based vulnerabilities, even

those that do not alter the SQL query structure, and does so without extensive source code

analysis. Our method does not look solely at the syntax of the query, but also considers its

semantics. It analyzes the query using concolic testing with input test generation to pinpoint

www.manaraa.com

6

vulnerable query conditions. Concolic (concrete plus symbolic) testing is a software verification

technique that combines concrete values with symbolic execution, including a constraint solver

to generate subsequent test cases [30].

1.2 First Order Cross-Site Scripting Attacks

According to OWASP Top 10 - 2010: The Top Ten Most Critical Web Application Se-

curity Risks list, Cross-Site Scripting (XSS) is listed as number two. “Cross-Site Scripting

(XSS) attacks occur when: 1. Data enters a Web application through an untrusted source,

most frequently a Web request. 2. The data is included in dynamic content that is sent to a

Web user without being validated for malicious code” [1].

Cross-Site Scripting Attacks (XSSAs) are injected via Web page inputs or via the address

bar in a URL and are executed in the browser. The crux of an XSSA is to launch a script (e.g.,

<script>malicious script</script>), or cause a victim to launch a script in the browser.

Injected code for XSS contains tags (script or javascript:) and tag symbols “<” and “>”,

some subset of tags and symbols that concatenate with other strings to create script tags, or

a script call in its entirety. A First Order XSS attack is immediately executed or triggered

by an event (e.g., mouseover) and does not persist beyond the HTTP session in which it was

injected.

Facebook, which has grown in popularity since its inception, has had publicly scrutinized

XSS Vulnerabilities (XSSVs). In a 2008 attack [31], a job position script was vulnerable to

the URL injection shown in Figure 1.2 that displays a user’s cookie (Note: this is a seemingly

innocuous attack, a user displaying his or her own cookie. However, the implications are the

XSSV itself and the possibility that an attacker has comprised a user’s system and is capturing

the displayed cookie).

Figure 1.2(a) shows encoded symbols (e.g., %3C, %22) which are decoded by the browser,

bypassing any security measure that does not check for this encoding. Figure 1.2(b) displays

the decoded attack. This type of XSS, called self-XSS, occurs via social engineering ruses,

www.manaraa.com

7

http://www.facebook.com/jobs/position.php?st=

%22%3E%3Ciframe%20src=http://xssed.com%3E

%3C/iframe%3E%3Cscript%3Ealert(document.cookie);%3C/script%3E

(a)

http://www.facebook.com/jobs/position.php?st=

"><iframe src=http://xssed.com>

</iframe><script>alert(document.cookie);</script>

(b)

Figure 1.2 Facebook’s XSS vulnerability of 2008

where an attacker emails (or posts) a link that a victim clicks (or copies and pastes) launching

the attack. Such was the case in a 2011 Facebook attack [32], wherein users copied and pasted

a link containing malicious JavaScript which caused sharing of offensive content.

Cross-Site Scripting attacks can be detected and/or blocked in the browser or on the Web

server at runtime. These attacks exploit the vulnerabilities that can be detected dynamically or

statically offline, prior to application deployment. A few SQLID approaches, e.g., testing [5, 27]

and model checking [26], are encompassing enough to be applied to XSS detection (XSSD).

Methods applied to XSSD also include proxy [33, 34], browser policy [35, 36, 37, 38, 39], and

parse tree [40, 41]. Some server-side approaches use static code analyses: testing [13], program

analysis [42], code re-write [43], and model checking [22]. Chapter 2 includes a more detailed

review of these and additional methods for XSSD.

In Chapter 4, we present a server-side solution to identify vulnerabilities via testing using

the concolic test engine jCute [44]. Our concolic method uses an initial generated concrete

value and subsequent concrete values based on symbolic constraint solving.

www.manaraa.com

8

1.3 Contributions

1. Classification of First Order Injection Vulnerability and Attack Detection

Methods. We have defined a comprehensive classification of works that address First

Order SQLI and XSS. This classification defines and describes properties of First Order

SQLID and XSSD methods which are then used to classify a representative body of ex-

isting works. Based on the classification of existing methods and their advantages and

draw-backs, we propose preferable characteristics for these methods.

2. First Order SQL Injection Vulnerability Detection. We have proposed a solution

that discovers First Order SQLIV by evaluating the query outside the code environment

and by considering semantic dependencies in the query other methods fail to analyze. Our

method will detect tautology-based vulnerabilities that do not alter the structure of the

SQL query. It models the syntax and semantics of the query, including any subqueries,

and it applies concolic testing to detect vulnerabilities.

3. First Order Cross-Site Scripting Vulnerability Detection. We have developed a

framework that detects First Order XSSV and instruments source code for runtime XSSA

monitoring. Our framework is also capable of identifying XSSV due to both conditional

copy (of input to output) and concatenation of input and/or strings with the use of a

concolic testing tool.

1.4 Organization

In Chapter 2, we present a comprehensive classification describing properties that can be

attributed to techniques proposed to address First Order Injection Vulnerabilities and Attacks.

We also outline various methods used in the detection of two types of Injection Attacks (IA) ad-

dressed in this thesis, SQLI and XSS. Chapter 3 proposes a technique to address vulnerabilities

to SQLIAs. In Chapter 4, we propose a technique to address Web applications’ vulnerabilities

to XSSAs. Finally, in Chapter 5 we discuss future avenues of research, specifically focusing on

how our proposed methods can be directly extended to detect and prevent Second Order IA.

www.manaraa.com

9

CHAPTER 2. CLASSIFICATION OF FIRST ORDER RELATED

WORKS

In this chapter, we define and describe a comprehensive classification for First Order

Injection Attack and Vulnerability detection approaches. Furthermore, we categorize a repre-

sentative body of works using this classification and organize the works by primary vulnerability

and/or attack detection technique (e.g., testing, program analysis, model checking). We begin

with the recorded history of the two types of First Order Injection Vulnerabilities which are

the focus of this thesis, SQL Injection and Cross-Site Scripting. This chapter is organized as

follows: Section 2.1 presents the documented history of SQL Injection and Cross-Site Scripting

vulnerabilities, Section 2.2 defines and describes our classification, Section 2.3 classifies works

addressing these First Order Injections, and finally Section 2.4 summarizes observations on the

classification and methods addressing First Order SQLI and XSS.

2.1 Introduction

In OWASP Top 10 - 2010: The Top Ten Most Critical Web Application Security Risks

list Injection attacks are most critical. Even prominent Web sites with resources to ensure the

implementation of security measures are not immune to this threat [1]. In January 2012, Ama-

zon’s Zappos.com fell victim to a data breach exposing 24 million customers’ private information

after attackers exploited an application vulnerable to SQL Injection [45]. On July 12, 2012,

Yahoo urged users to change their passwords immediately, after their subdomain Yahoo Voices

was the target of a successful SQL Injection that revealed 453,492 unencrypted Yahoo account

passwords, over 2,700 database table and field names and 298 MySQL variables [46]. Similarly,

password leaks affected 6.5 million users at the professional networking site LinkedIn [47], an

www.manaraa.com

10

undisclosed percent of the 40 million users at the social music site last.fm [48], 1.5 million at

the dating site eHarmony [49] and 420,000 at the social networking site formspring [50].

The first documented SQL Injection Vulnerability was from US-CERT/NIST (United

States Computer Emergency Readiness Team/National Institute of Standards and Technology)

and was released to the NVD (National Vulnerability Database) [51] in 2001, CVE-20011-

1460 [52]. This vulnerability allowed bypassing user authentication in the user parameter in

article.php of PostNuke versions 0.62-0.64. Soon after, several techniques were proposed

addressing this security flaw. SQL injection attacks persist and new more complex attacks

emerge. Countermeasures are continually implemented to combat this threat.

In 1999, the first documented Cross-Site Scripting vulnerabilities recorded by US-CERT/

NIST from the NVD, CVE-1999-1357, applied to various UNIX operating system and the

Netscape browser, versions 4.04 through 4.7 [53]. In this vulnerability, the character “0x8b” is

converted to the less-than symbol (“<”), and the character “0x9b” character is converted to

the greater-than symbol (“>”), allowing script injection in CGI programs1 that do not filter

(i.e., sanitize) these characters. The NVD reported a few documented vulnerabilities from 1999

until 2001, when numerous vulnerabilities were reported. Among the 2001 vulnerabilities in

the US-CERT Vulnerability Notes Database are the following: “Apache Tomcat vulnerable

to Cross-Site Scripting via passing of user input directly to default error page” [54], “Lotus

Domino Server R5 vulnerable to Cross-Site Scripting via passing of user input directly to default

error page” [55], and “IBM WebSphere vulnerable to Cross-Site Scripting via passing of user

input directly to default error page” [56]. Significant research efforts to understand XSS on a

theoretical level began a few years later.

Of course, Web site administrators took immediate measures and hacked simplistic de-

fenses; however, the research community took on a more holistic approach to the problem. The

onslaught of attacks was met with an onslaught of attack and vulnerability detection and pre-

1CGI programs, usually written in a scripting language, are treated today as part Web application content
and not generally distinguished from such applications.

www.manaraa.com

11

vention techniques. In general, vulnerability prevention comes in Web application development

and post-deployment patching of source code; attack prevention occurs at run-time, interceding

the attack.

We formulate our own techniques for SQLID and XSSD in Chapters 3 and 4, respectively,

but first we wish to understand the contributions and impact of existing techniques that detect

First Order Injection vulnerabilities and attacks. This understanding begins with a structured

classification that provides a representative overview of SQLID and XSSD techniques to provide

a consistent, comprehensive characterization of existing solutions.

The works describing or deriving SQLID and/or XSSD methods do not typically use the

same characteristics for evaluation or comparison. Our aim is to provide a consistent classifi-

cation and review of works to help guide research efforts in addressing First Order Injection

Detection (FOID). FOID can be further classified as attack detection or as vulnerability de-

tection. Methods that aim to detect actual attacks, address SQLIA and XSSA, while methods

that aim to find vulnerable queries and/or code address SQLIV and XSSV.

Contributions With this classification and review of a representative body of FOID

methods, our aim is

• to give a road map of existing FOID research. This chapter gives an overview of

a representative body of First Order SQLID and XSSD works.

• to provide an evaluation and comparison guide for reviewing existing and

proposed FOID methods. We use our road map of works to compare known techniques

for SQLID and XSSD. This provides insight into characteristic combinations that are

possible and preferable for future SQLID and XSSD approaches.

• to provide a foundation for coordinating future research on FOID. Other re-

searchers have contributed comparisons and surveys for SQLID [57, 58, 59, 60], and

surveys for XSSD [57, 61]; however, to the best of our knowledge, this is the first com-

www.manaraa.com

12

Figure 2.1 Classification of Injection Attack Detection methods

prehensive classification of methods detecting First Order SQLIA, SQLIV, XSSA and

XSSV.

2.2 Classification of First Order Vulnerability and Attack detection

methods

In this section, we detail characterizations of techniques that address SQLI and XSS

vulnerabilities and attacks. We define Detection Type, Detection Method, Granularity, Location

of Method, Automation Level and Test Case Source. Figure 2.1 outlines our classification of

categories and some category inter-dependencies relevant to current and future research in First

Order Injection Vulnerability and Attack Detection. The remainder of this section defines each

of these categories.

2.2.1 Detection Type

The Detection Type indicates the method’s primary goal: vulnerability detection, attack

detection, or a hybrid of the two. With vulnerability detection, the overall objective is to

www.manaraa.com

13

inform the developer and/or site administrator of vulnerabilities, to modify the source code by

removing vulnerable sections and/or by adding monitors, or both. Similarly, attack detection

may inform of an attack, prevent the attack completely by blocking it, prevent the attack by

modifying the attack-containing code, or some combination thereof. Hybrid method objectives

can include combination of subsets of vulnerability and attack objectives. Although a basic

classification, detection type gives insight into different technologies, which have been applied

to date and which should persist in future research, based on desired objectives and given

limitations.

• Injection Vulnerability Detection : An injection attack vulnerability is the query or

code segment(s) susceptible to injection attacks. Vulnerability detection methods deter-

mine the presence of susceptibilities in an application or in a particular query. Some meth-

ods specifically pinpoint potentially offensive hotspots (application code locales) [8, 28].

Most often vulnerability analysis occurs off-line; however, in [5, 62, 63], the authors have

presented runtime vulnerability analysis methods. Vulnerability detection finds code

weaknesses as early as the design and development phase of an application. Once the

vulnerability is discovered, the method’s final step may be to modify the source code to

remove the vulnerability, to add checks at the hotspots, or to inform about the vulnera-

bility in a log, report or other output.

• Injection Attack Detection : SQLIA results from a malicious query and XSSA results

from a malicious script to allow unauthorized access to resources (stored information or

system resources). Attacks are the result of malicious user input(s) used in a query or

injected into code to be rendered on the browser. To help secure Web sites, developers

can include user input sanitization, but malicious query and script formation may still

occur (e.g., user input follows the application’s validation tests but is unsafe, user input

bypasses sanitizing measures, sanitizing measures are inadequate, singularly benign inputs

and/or strings are concatenated to create a malicious value). SQLIA and XSSA must

be discovered at runtime. Most methods aim to prevent the attack, either by stopping

it or by replacing the attack with benign code. Attack detection methods can inform by

www.manaraa.com

14

notifying the administrator via server-side log files, or other means, that an attack has

occurred.

• Hybrid Vulnerability/Attack Detection : Hybrid vulnerability and attack detection

combines the discovery of both vulnerabilities and attacks. These combination techniques

often contain various phases, including vulnerability detection proceeded by attack detec-

tion, both defined above. The overall goal of a hybrid method can be two-fold, one goal

based on the vulnerability detection phase and another based on the attack detection

phase. During the vulnerability phase, the aim is to find the code weaknesses, followed

by either code patching or code modification at the weaknesses. During the attack phase,

the aim is to detect the actual attack, followed by blocking the attack, making the attack

benign, and/or reporting the attack.

2.2.2 Detection Method

The method describes the analysis performed on the Web application for both SQLID and

XSSD or on the query alone for SQLID. Analysis can be static, dynamic or a combination of

the two.

• Static Methods: Static methods generally perform vulnerability detection, since vul-

nerabilities, unlike attacks, can be discovered off-line, prior to deployment. Overhead

that would be incurred by a static method is often prohibitive for runtime deployment.

As a result static methods are used in the pre-deployment testing phase. Such testing

gives developers and/or administrators the opportunity to address vulnerabilities before

they can be exploited. A disadvantage to static techniques is the need for access to the

source code, which may not be available if the application being tested for vulnerability

is developed by a third-party.

• Dynamic Methods: Dynamic methods are typically applied to attack and hybrid vul-

nerability/attack detection types to find runtime attacks; however, some vulnerability

detection methods use dynamic methods [5, 64, 62]. These method types can require

source code access, execution of the source code, execution of a created test code, or

www.manaraa.com

15

simulated runs of the application. Furthermore, dynamic runtime techniques can add

overhead and may impede the user experience.

• Hybrid Static/Dynamic Methods: Some methods combine static and dynamic anal-

ysis, thus placing them in this hybrid classification. In this hybrid methodology, static

and dynamic analysis will most often occur in different phases. Generally, the static anal-

ysis phase serves to discover vulnerabilities, and the dynamic phase attacks that exploit

those vulnerabilities. This need not be the case, as static analysis is not exclusive to

vulnerability detection and dynamic analysis is not exclusive to attack detection.

2.2.3 Granularity

Granularity of method refers to the portion of the Web application required for detection.

Some SQLID methods require the application (in part or in its entirety) while others require

only the query to perform the vulnerability or attack detection. XSSD techniques are appli-

cation level, as are many SQLID techniques which follows from the fact that many SQLID

methods use off-line program analysis (both static and dynamic), testing, and static analyses

methods.

• Application level : SQLID and XSSD methods that employ application level analysis

tools (e.g., scanners, program analysis, model checking) have application level granular-

ity. Another common theme among application level granularity methods includes static

source code preprocessing to discover hotspots (code locales wherein vulnerabilities might

occur, e.g. input and/or output variables), thus we see application level static vulnerabil-

ity detection. Similarly, dynamic and hybrid methods can require application execution

and thus will have application level granularity.

• Query level : SQLID methods having query level granularity require only the query for

SQLI detection phase. Query level methods can incorporate a proxy or other middle-

ware between the application and the database management system (DBMS) and can

reside on the application server, proxy server, or database server. Although a query

level method’s detection phase may not require the entire source code, it may require

www.manaraa.com

16

preprocessing part of the source code to extract the query or query structure, such as parse

tree methods [15, 65]. Other query level SQLID methods may intercept a query between

the application and database for testing (on the application server, on the database server,

or on an intermediary proxy server) [29, 64, 28, 66].

2.2.4 Location

Location refers to where the detection tool of the implemented method must reside: Server-

side, Client-side, or Hybrid.

• Server-side : Server-side methods are implemented and executed on the application

server, on the database server, or on a proxy server. This means the user is not burdened

with software installation or browser plug-in and subsequent updates. Server-side im-

plementations typically perform vulnerability detection, using static or hybrid methods

prior to deployment. Dynamic server-side attack detection methods may add transparent

overhead to an application, thus they can be hidden from the user’s browsing experience,

as long as overhead is minimal.

• Client-side : These methods look for vulnerabilities in the browser environment or via

some tool running on the client that intercepts HTTP requests and/responses. Browser-

side tools are not used to find SQLIA, as First Order attacks are immediate and the

user would be the attacker. Browser side methods could include injectors, crawlers, some

testing methods; however, testing is generally performed server side.

• Hybrid Server- and Client-side : This describes a combination of server-side and

client-side tools working in tandem. Deployment of hybrid methods requires additions to

both server and client environments, and often communication and coordination between

them.

2.2.5 Level of Automation

Level of automation describes how much or how little user interaction is required for detec-

tion technique implementation. Some methods require users to supply test cases, define rules

www.manaraa.com

17

or interact with the detection tool, while others require no interaction.

• Fully-automated : Fully-automated techniques require only the source code (for appli-

cation level and certain query level) or the query itself (for query level) as input. They do

not require user intervention for any reason. If the user is required to, or has the option to,

define rules or attacks patterns describing SQLI and XSS vulnerabilities and/or attacks,

we do not classify the method as fully-automated. Fully-automated techniques that re-

quire test cases rely on automatic test case generation, not on a library or user-defined set

of rules. Any detection type (vulnerability, attack, or hybrid) may be fully-automated.

Server-side static methods are most commonly fully-automated, generating test cases au-

tomatically where applicable. Dynamic and hybrid methods can be fully-automated as

well, as long as any necessary test case generation is automatic.

• Semi-automated : Semi-automated techniques require some user intervention for execu-

tion. The user may be required to supply test cases, define rules, supply attack patterns

or libraries, or somehow interact with the tool to discover SQLI and XSS vulnerabilities

and/or attacks. A semi-automated technique may have automated test case generation

but may still rely on user interaction, such as user-defined attack patterns or rules [17].

2.2.6 Test Case Source

Some methods generate test cases to try to create attack vectors, to test for vulnerable code

or to discover malicious attack patterns. All method types (static, dynamic and hybrid) could

utilize some form of test case generation, but not all do. Test case generation, if present, is

classified as one of the following:

• Automated test case generation : Automated test case generation does not require

user intervention, the method implementation itself generates test cases. Some methods

mutate the tests based on intermediate results to generate subsequent test cases (i.e.,

concolic testing).

• Attack library : An Attack library acting as a blacklist contains the specific attacks,

attack patterns or other specifications detailing what should be disallowed. Libraries

www.manaraa.com

18

acting as whitelists contain safe values or patterns. Libraries can be defined by the tool

authors and/or the tool users (e.g., server administrators or end-users). Since, at some

point, libraries require definition, methods with an attack library that implement (an)

automated process(es) can only be semi-automated.

We can now classify works related to SQLI and XSS using the categories outlined above.

In the next section (2.3), we present a chronological survey that classifies methods accordingly

and describes their technologies.

2.3 Classifications of related works

Among early FOID works, researchers applied software testing, program analysis and

model checking techniques to applications. As these techniques revealed their limitations,

researchers explored other methodologies. Using our classification, we outline the progression

of FOID methods and identify their characteristics. Table 2.1 and Table 2.2 summarize SQLID

and XSSD works by Detection type, respectively. In Table 2.3, SQLID works are categorized

by Detection type, Detection method, Granularity, and Automation level.

In Table 2.1, works addressing SQLID are classified by approach or underlying technology

of the approach. This summary also illustrates the progression of techniques applied to SQLID

in order from left to right: program analysis, model checking, code re-write, structural match-

ing, taint analysis, proxies, and various testing (concolic, penetration, blackbox). In Table 2.2,

works addressing XSSD are also categorized by underlying technology of the approach, in-

cluding Web crawler program analysis, browser-based, proxy, model checking, concolic testing,

detection system, code re-write and structural matching.

In the remainder of this section, we describe vulnerability and attack detection and/or

prevention techniques and identify their characteristics according to our classification. We aim

to discover favorable characteristics among the works to inform continued research in FOID.

www.manaraa.com

19

Table 2.1 First Order SQLID Works by Technique

Testing Program

Analysis

Model

Checking

Code

Re-write

Struct-

ural

Match-

ing

Taint

Analysis

Pen

Testing

Black-

Box

Testing

Vulner-

ability

Detection

[5]1

[27]

[13]19

[3]16

[28]

[2]

[16]3

[17]5

[18]

[10]

[22]18

[23]

[24]8

[25]21

[9]12

[19]

[20]

[14]13 [62]22

[63]23

Attack

Detection

[21]4 [15]9

[65]10

[4]14

[29]17

[64]20

[7]11

[12]15
[66]24

Hybrid

Vulner-

ability

& Attack

[11]6 [26]2

[8]7

1WAVES 2BMC 3SQLRand 4WebSSARI 5bddbddb 6PQL 7AMNESIA 8SQLUnitGen 9SQLGuard
10SQLCHECK 11WASP 12StringBorg 13Sania 14CANDID 15SMask 16SAFELI 17SQL-IDS 18QED
19ARDILLA 20SQLProb 21Apollo 22MySQL1Injector 23v1p3r 24SENTINEL

2.3.1 Testing

Testing is used in many phases of the software development cycle to find errors in a

program. Not all errors can be detected with testing techniques, nor can the absence of errors

be verified with testing techniques. Software testing tools may have the functionality to gener-

ate test cases; thus they provide a natural extension to Web application testing for generating

test inputs and finding errors that could make applications vulnerable to Web-based attacks.

Besides traditional testing, concolic testing has also been applied to Web applications for secu-

rity testing. “Concolic testing automates test input generation by combining the concrete and

symbolic (concolic) execution of the code under test” [30].

Among one of the first works, in 2003, Huang et al. [5] have designed WAVES (W eb

Application V ulnerability and E rror Scanner) to address both SQLIV and XSSV. Following

software testing procedures, the authors have analyzed application source code to determine

poor coding practices by applying fault injection, behavior monitoring, dynamic analysis and

www.manaraa.com

20

Table 2.2 First Order XSSD Works by Technique

Web

Crawler

Program

Analysis

Browser-

based

Proxy/

Firewall

Model

Checking

Testing Code

Re-write

Struct-

ural

Match-

ing

Vulner-

ability

Detection

[5]1 [42]5

[67]

[33] [22]11 [27]

[13]7
[20]

Attack

Detection

[37]

[35]

[36]2

[38]

[39]9

[34]4

[68]13
[69]

[43]6
[70]12

[41]3

[40]

[71]

[72]8

Hybrid

Vulner-

ability

& Attack

[26]10

1WAVES 2BEEP 3BLUEPRINT 4Noxes 5Pixy 6Noncespaces 7ARDILLA 8XSSDS 9E-GUARD
10BMC 11QED 12XSS-Guard 13SWAP

blackbox testing. The resulting WAVES architecture includes crawlers to determine all pages

of the Web site with HTML forms, providing a blackbox, dynamic application analysis. These

pages are parsed to determine input and other relevant fields. Next, injectors are used to inject

attacks from a library of attack patterns as input for runs of the application. Then the behavior

of the page is monitored and algorithms are used to determine if an attack was successful after

the application responds to the submitted request. Any error messages that are normally sent

to the user (dialog boxes, pop-ups, etc.) are suppressed and logged. WAVES provides a Web

application interface, thus only source code execution is necessary. WAVES is an application-

level, dynamic, server-side vulnerability and error scanner that relies on a library of injection

patterns to discern vulnerabilities making it semi-automated.

Five years later, in 2008, researchers have explored more testing solutions. Fu et al. [3]

have applied testing to SQLID with symbolic values in SAFELI (S tatic Analysis F ramework for

discovE ring sqL I njection vulnerabilities). SAFELI is a server-side, static analysis framework

that performs symbolic execution on an application as follows. The application source code

is instrumented for symbolic execution, at each SQL submission “hotspot” a constraint string

is constructed by consulting a pre-set stored library of attack patterns (in this case regular

www.manaraa.com

21

Table 2.3 Summary of classified First Order SQLID countermeasures by year

Year Type Method Granularity Automation Level

WAVES[5] 2003 vuln. dynamic application semi-auto

BMC[26] 2004 hybrid hybird application fully-auto

WebSSARI[16] 2004 vuln. static application fully-auto

Gould, et al.[2] 2004 vuln. static application fully-auto

SQLrand[21] 2004 attack hybrid application semi-auto

bddbddb[17] 2005 vuln. hybrid application semi-auto

PQL[11] 2005 hybrid hybrid application semi-auto

AMNESIA[8] 2005 hybrid hybrid application fully-auto

SQLUnitGen[24] 2006 vuln. hybrid application semi-auto

SQLGuard[15] 2005 attack hybrid query semi-auto

SQLCHECK[65] 2006 attack hybrid query semi-auto

WASP[7] 2006 attack dynamic application semi-auto

StringBorg[9] 2007 vuln. hybrid application semi-auto

Sania[14] 2007 vuln. hybrid application semi-auto

CANDID[4] 2007 attack dynamic application semi-auto

SMask[12] 2007 attack hybrid application semi-auto

SAFELI[3] 2008 vuln. static application semi-auto

Wassermann, et al.[27] 2008 vuln. dynamic application semi-auto

SQL-IDS[29] 2008 attack hybrid query semi-auto

Lam, et al.[10] 2008 vuln. hybrid application semi-auto

QED[22] 2008 vuln. hybrid application semi-auto

Thomas, et al.[19] 2009 vuln. hybrid application semi-auto

ARDILLA[13] 2009 vuln. hybrid application semi-auto

Yu, et al.[23] 2009 vuln. static application semi-auto

SQLProb[64] 2009 attack dynamic query semi-auto

Apollo[25] 2010 vuln. hybrid application fully-auto

MySQL1- Injector[62] 2010 vuln. dynamic application semi-auto

v1p3r[63] 2010 vuln. hybrid application semi-auto

Ruse, et al.[28] 2010 vuln. hybrid query fully-auto

Johns, et al.[20] 2010 vuln. static application semi-auto

Yu, et al.[18] 2011 vuln. static application semi-auto

SENTINEL[66] 2012 attack dynamic query fully-auto

www.manaraa.com

22

expressions), and finally the string constraint solver uses the constructed constraint string to

generate vulnerabilities. This semi-automated approach serves to inform developers of code

vulnerabilities. Earlier that same year, Wasserman et al. [27] have utilized concolic testing

(concrete plus symbolic testing) in Web applications to find insecurities, both SQLIV and

XSSV. They have proposed an algorithm with an automated input test generation and runtime

values for dynamic code analysis and constraint solving. Their method uses SQL injection test

oracles, making it semi-automated. An advantage to concolic testing is the detection of attacks

resulting from the concatenation of strings that alone do not form a threat, but together do.

This hybrid static and dynamic, application-level, server-side approach detects vulnerabilities.

In the following year (2009), Kieżun et al. [13] have presented an automatic technique

to detect SQLIV and XSSV, both immediate and persistent (First and Second Order, respec-

tively). They have implemented a tool, Ardilla that employs a concolic method that generates

an example input, marks user input as taints to be tracked symbolically through the applica-

tion (even into the database, where applicable), and mutates example input to create concrete

exploits. Exploits are verified against a library of SQLIA patterns at the statically computed

sensitive sinks (spots possibly susceptible to SQL Injection). However, the authors report that

their constraint solver will under-approximate symbolic variable values. This hybrid dynamic

and static method employs concolic testing, similar to the method proposed by Wassermann et

al. in [27] using concolic technique for both SQLIV and XSSV detection, and is an application-

level, server-side, semi-automated vulnerability detection method with automated test case

generation.

In 2010, we [28] have presented a SQLIV query level tool that develops a model of the

query capturing the dependencies of sub-queries. The model is analyzed with a concolic testing

tool to automatically generate inputs and find conditions that make the query vulnerable,

creating a causal set of the vulnerability. This causal set represents sets of condition values

in the query that could lead to attacks. This hybrid, fully-automated method reports no

false positives or false negatives when finding vulnerabilities to tautology-based attacks. It is

www.manaraa.com

23

described in detail in Chapter 3.

In conclusion, testing techniques are generally employed off-line (pre-deployment) to

inform the developer of weaknesses and some even patch weaknesses in the code. However,

even best practices cannot secure code from all vulnerabilities.

2.3.2 Program analysis

Applied to Web applications, program analysis can aid in finding behaviors that may

make the application susceptible to Web-based attacks. Some methods applied to FOID include

static analysis (which does not require code execution), dynamic analysis (which requires code

execution), control and data flow analysis, pointer and alias analysis.

In 2004, Huang et al. [16] have presented an enhanced tool to address both SQLI

and XSS. WebSSARI (Web application Security by S tatic Analysis and Runtime I nspection)

implements an algorithm that captures the semantics of information flow in an application.

WebSSARI performs static analysis to discover vulnerable code sections and automatically

inserts run-time guards in vulnerable sections. The ability to pinpoint weak spots limits the

number of instrumented guards needed, minimizing added run-time overhead. However, this

method looks at the symptoms of the error (the behavior resulting from the error) not the

actual origin of the error (the line(s) of code responsible for the error). It inserts guard at calls

to potentially vulnerable functions exhibiting these symptoms, not a the code section within the

function wherein the error itself exists. This fully-automated, static, server-side, application-

level vulnerability detection method aims to modify the code with sanitization methods only, it

does not include the implementation of a runtime attack monitoring technique. Sanitization can

be a good defense; however, in the case of inadequate sanitization or attacks that circumvent

sanitization methods, a run time monitoring technique could serve as a secondary check. Gould

et al. [2] have verified correctness of SQL query strings using a static program analysis method.

For instance, a dynamically constructed SQL query string in an application may use a variable

of datatype string in the query for an expected numeric field value in the database, an error a

www.manaraa.com

24

type system such as Java’s will not deem incorrect. An example from [2] is a query with the

following SELECT clause: SELECT ‘$’ || (RETAIL/100) FROM INVENTORY, where || indicates

concatenation. Many database systems will not cast (RETAIL/100) to a string; thus this will

result in a runtime error. Their tool verifies the correctness of query strings to find errors

such as this and others. It uses a Finite State Automata (FSA) representation of the string

and processes it with a modified context-free language (CFL) reachability algorithm to check

SQL syntax. The reachability algorithm matches the grammar rules to the string; and strings

with errors indicate possible vulnerabilities. This static vulnerability testing technique does

not address attacks directly, but instead detects runtime errors that could be associated with

vulnerabilities. It is application-level, server-side and fully-automated vulnerability detection

with automated test case generation that addresses SQLI.

In 2005 Lam et al. [17] have developed a context-sensitive analysis tool, called bddbddb,

based on deductive databases. Their tool stores information as relations that are accessed via

Datalog, a logic query language used for deductive databases, and automatically translates each

database query into a BDD (Binary Decision Diagram) program [73]. This program includes

the BDD representation, BDD operations, database query optimizations and optimizations for

BDD variable assignment. For simplicity, the authors have presented a subset of Datalog, PQL

(Program Query Language), to define vulnerable patterns, applicable to both SQLI and XSS.

They have implemented a semi-automated, server-side, application-level method. It utilizes

static pointer alias analysis and dynamic query execution technique to solve user-defined PQL

queries for vulnerability detection. The method has shown to have a low false positive rate

and to produce no false negatives. PQL is described in detail in [11] by Martin, Livshits and

Lam. PQL queries verify if queries match attacks. This hybrid static and dynamic, hybrid

vulnerability and attack detection application-level method is semi-automated, requiring user-

defined, attack-identifying PQL queries. This approach statically finds vulnerability matches

using context-sensitive, flow-insensitive program analysis which minimizes necessary code in-

strumentation points. With sound static checkers, their method produces false positives but no

false negatives. Finally, instrumented source code dynamically catches and mitigates PQL rule

www.manaraa.com

25

violations. In a subsequent work, Lam et al. [10] have extended PQL to allow users to declare

information flow patterns. They have applied context-sensitive, flow-insensitive information

flow tracking. This flow tracking finds vulnerabilities in a program and, if errors too numer-

ous to analyze are found, then a model checking analysis automatically generates input attack

vectors to reveal the vulnerability statically. Model checking is a more precise static analysis

that uses a model to exhaustively check against specifications, thus it has the potential to find

a complete set of attack vectors by simulating program execution on all inputs. This is used to

instrument runtime monitoring into the application for dynamic attack detection. We classify

this as a program analysis technique since model checking is not necessarily applied after the

program analysis is. Although this application-level, server-side method has fully-automated

test-case generation, it is only semi-automated due to the reliance on user-defined PQL queries,

which can define both SQLIV and XSSV patterns.

In 2006, Jovanovich et al. [42] have used a dataflow analysis that is inter-procedural

and context-sensitive to find XSSVs in a program. First they use dataflow analysis to find

vulnerable hotspots. Data flow analysis tracks taints through the program to see if it can reach

sensitive sinks (routines that send data to browser) unsanitized. This followed by alias and

literal analysis for more precise results. Aliases refer to variables that share the same memory

location, thus a tainted variable’s aliases must also be labeled tainted. Literal analysis keeps

track of variables’ and constants’ possible values at each program point to aid in taint analysis.

The authors have implemented a system, Pixy, to perform the analyses with an average of

one false positive per each vulnerable result. This server-side method uses static source code

analysis to find XSSVs. In another work addressing XSSV, Jovanovich et al. [67] have performed

static source code analysis for vulnerability detection for more precise analysis. The authors

have integrated their tool [42] for this data flow analysis and enhanced their previous work with

an a new alias analysis approach that specifically targets scripting language semantics (PHP).

This alias analysis includes shadow values to compute relationships among all variables at each

program point including local and global variables. The taint analysis with these aliases then

reveals when sensitive sinks can be reached. This static, server-side methods discovers XSSVs.

www.manaraa.com

26

In 2011, Yu et al. [18] have extended their earlier work addressing SQLI and XSS [23]

which introduced two phases: vulnerability analysis (using attack patterns) and vulnerability

signature generation (which is fully-automated), to include a third phase, sanitization genera-

tion. In this third phase, the framework automatically creates patches to match-and-block or

match-and-sanitize. Match statements inserted will halt execution upon matching a vulnerabil-

ity signature. Replace statements will replace the string matching the signature with the string

after deletion of a set of characters from the input such that the string no longer matches the

signature. The overall goal of this static, server-side, application-level method is to eliminate

the vulnerabilities (including SQLIV and XSSV) in the application code.

Program analysis has continued to be a viable technique SQLIV and XSSV detection.

In newer work, additional technologies are applied to improve upon previous programming

analysis solutions. If not complemented by an attack detection, program analysis is limited

to vulnerability detection. The overhead of program analysis inhibits feasibility of its use at

runtime, when attack detection must occur. This application-level technique can offer precise

vulnerability detection, and can be fully-automated as long as any test case generation is also

automatic.

2.3.3 Model checking

Model checking is also among the first techniques applied to FOID. Model checking

techniques create a model of the program or some portion of the program to verify if it meets

some set of specifications using temporal logic and does so exhaustively. Web applications are

modeled as an input language of a model checker, negation of specifications describing possible

attack pattern or exploitation of vulnerabilities are expressed in temporal logic. Satisfaction of

properties imply absence of an attack or vulnerability. If a counterexample is identified, then

the counterexample provides information regarding how attack is deployed or vulnerability

exploited.

www.manaraa.com

27

In 2004, Huang et al. [26] have employed bounded model checking, BMC, to identify

application code sections vulnerable to SQLI and XSS. Once found, the algorithm automatically

patches the code with runtime guards. This is similar to the authors’ previous work [16]

which finds errors and instruments code. However, in this work, the counterexamples of model

checking make code instrumentation more precise. Patching, in the from of input sanitization,

occurs where errors are first found, not at other code locales where the affects of the errors

may be found. This proposed solution is a fully-automated hybrid method and is applied at

the application level on the server to statically find and modify vulnerable source code.

In 2005, Halfond and Orso have created a fully-automated model-based approach

called AMNESIA [8], (Analysis and M onitoring for NEut-ralizing SQL-I njection Attacks).

AMENSIA is a hybrid method and identifies both vulnerabilities (hotpsots) and attacks for

SQLI. This server-side, application-level static program analysis includes the creation of a

non-deterministic finite state automata (NFSA) to build anticipated query models for the

application. First the code is scanned for identification of hotspots (any code locale that

sends queries to the database). Next, the anticipated query models (character-level NFSAs

expressing all possible strings) are built, these models represent queries that could be built by

the application. Runtime monitors are instrumented at these hotspots to check actual query

strings against the anticipated query model, parsing the string query as a database according

to the SQL grammar. If the model is not accepted, it is identified as a SQLIA. AMENSIA does

so with no false positives; however, false negatives can occur when attack and benign query

structures match an overly conservative model or have identical SQL structures. Attacks that

do not alter the SQL anticipated query structure will be overlooked. The next year, AMNESIA

was included as part of the SQLUnitGen testing tool [24]. This 2006 work by Shin et al. uses

static and dynamic analysis to pinpoint vulnerable code locations by identifying how input

is manipulated in the code. First, AMNESIA is used to build a query model which includes

input flow information. Next, a modified version of an existing Java test case generation tool

(JCrasher1) is implemented. Finally, the vulnerabilities are displayed in a call graph. False

1http://code.google.com/p/jcrasher/

www.manaraa.com

28

negatives can occur due to insufficient attack pattern definition. Test cases are generated only

for user input read from input methods and then passed as method arguments to be used in

queries. SQLUnitGen has automated test case generation but is semi-automated due to source

code modification required prior to use in the 2006 version. This application-level, server-side

tool finds SQLIVs.

In 2008, Lam et al. [10] have presented a language called Programmable Query Lan-

guage (PQL) for specifying patterns with the objective of addressing SQLI and XSS (PQL was

previously described in this section with the same authors’ program analysis-based methods).

They find security vulnerabilities with a static context-sensitive, flow-insensitive information

flow tracking technique that employs goal-directed model checking when there are numerous

errors. This application-level, hybrid method automatically generates input vectors that will

help reveal vulnerabilities in the code; however, it is semi-automated since it allows user-

declared information flow patterns in PQL. Next, Martin and Lam [22] have presented QED

(Query-based Event D irector), a model checking technique that automatically generates XSS

and SQLI Attacks and uses goal-directed model checking to discover vulnerabilities at the ap-

plication level. Despite the fact that this method has fully-automated attack vector generation,

it is semi-automated due to users’ ability to supply taint-based vulnerability specifications in

PQL [11].

In 2009, Yu et al. [23] have developed a string analysis based framework that automat-

ically generates vulnerability signatures for SQLIV and XSSV detection, given attack pattens

(regular expressions). These signatures are constructed via forward symbolic reachability anal-

ysis followed by backward symbolic reachability. Forward symbolic reachability determines

possible string variable values, represented as deterministic finite automata (DFAs). These

possible values are compared to the given attack pattern to determine vulnerabilities. Back-

ward symbolic reachability analysis computes all possible inputs that exploit vulnerabilities,

represented as DFAs, called vulnerability signatures. Both the forward and backward analysis

provide over approximations; thus, some vulnerabilities found in the forward reachability anal-

www.manaraa.com

29

ysis may be false positives. This application-level, server-side, semi-automated static method

requires attack pattern definition.

Apollo, by Artzi et al. [25] in 2010, is a technique combining concrete and symbolic

execution (concolic testing) and explicit-state model checking to detect vulnerabilities created

by runtime errors and by malformed HTML, which could include SQLI and XSS. The au-

thors have implemented Apollo, a PHP-specific tool, that dynamically discovers possible input,

using concrete and symbolic execution to track the flow in the application. Apollo is a fully-

automated, server-side, hybrid method that begins with a static analysis of JavaScript and

collecting of static HTML documents, followed by dynamic test case generation. The dynamic

test case generation is followed by monitoring the application for crashes and validating HTML

output via flow-tracking.

The different approaches that employ model checking model the code, the HTML

form, or the query itself (for SQLID). Various methods perfom control flow analysis, goal-

directed model checking, and concolic testing. The specifications checked against also vary,

predefined specifications and user defined queries in a query language specification. Like pro-

gram analysis, model checking is limited to vulnerability detection unless coupled with an

attack detection phase. Model checking requires the application source code, and can be fully-

automated if test cases are automatically generated. Unlike typical program analysis, model

checking results in counterexamples to reveal more information about the vulnerability.

2.3.4 Code re-write

The basis of some FOID techniques is alteration of the original source code or query

and using that alteration (or lack thereof) to detect vulnerabilities or attacks. Code re-writing

is another FOID solution.

Introduced in 2004, one proxy-based code re-write SQLID technique has been pre-

sented by Boyd and Keromytis [21], SQLrand. First, an application must be retrofitted or

designed to have altered queries with SQL keywords appended with random numbers, gener-

www.manaraa.com

30

ated by an Instruction Set Randomization (ISR). The runtime proxy removes and validates the

numbers on modified keywords or deems bare keyboards as malicious before sending queries to

the database. The authors have used only regular expressions (regex) to match SQL keywords

followed by integers, not (a) specific integer key(s). Thus, as implemented, any attacker need

only add a sequence of digits after injected keywords. Even with a key, the possibility of key

discovery exists. This method will not discover SQLIA that do not rely on SQL keyword injec-

tions. With static analysis to retrofit code and dynamic runtime proxy, this semi-automated,

server-side method relies on an attack library of regular expression for SQL keyword matching.

In 2007 BravenBoer et al. [9] have applied syntax embedding to address string manip-

ulations, particularly concatenations, that create attacks. They have designed a hybrid tool,

StringBorg, which acts on the server-side statically to parse application source code files and

generate a language-specific application programming interface (API). This API maps the guest

language to the host language, thus embedding the grammar of a guest language (e.g., SQL)

into a host language (e.g., Java). For example, Java code becomes “antiquotes” and SQL frag-

ments become “quotes”. StringBorg performs a transformation (called assimilation) of quotes

to API calls. Thus by construction the code is less vulnerable. StringBorg is semi-automated,

relying on an attack library. They use SQL as an example embedded language, but note that

their application is not limited to SQL as the embedded language and can be applied to other

languages and thus could detect other attacks, i.e., XSS. The authors have claimed that the

API guarantees no injection attacks can occur; however, only injection attack vulnerabilities

in which SQL keywords are injected are thwarted, as it analyzes the syntax of queries. Fur-

thermore, they have assumed that input will be concatenated with constants, which may not

be the case. Multiple inputs concatenated together could cause an injection attack when the

inputs themselves do not contain keywords or an attack, but once concatenated the resulting

string contains a keyword and an attack. An input value devoid of SQL keywords can still lead

to an attack, if the input results in a tautology-containing query.

www.manaraa.com

31

In 2009, Van Gundy and Chen [43] have applied ISR techniques to the problem of

XSSA in Noncespaces. The Web application is tasked with adding random prefixes of tags in

the XML namespace for each document. If a document is devoid of this random prefix, or the

prefix is incorrect, the client distinguishes it as untrusted, otherwise it is trusted. If a user

is able to guess the random prefix, an attack will be seen as trusted. This dynamic, client-

and server-side method finds and disables attacks. Also, Thomas, et al. [19] have presented a

technique, Prepared Statement Replacement-Algorithm (PSR-Algorithm), based on replacing

SQL queries in the source code with prepared statements. A prepared statement contains

the query structure and bind variables (placeholders for variables). For each bind variable

there is a setter method which assigns the variable, performs type checking and will neutralize

invalid characters (i.e., single quotes). Their method begins with static code inspection to

find SQLIVs. Given the source code and the line numbers of the SQLIVs, the PSR-Generator

generates prepared statements as replacement code for the SQLIVs. The algorithm itself then

checks for security via unit testing. This hybrid static and dynamic, server-side, application-

level method removes vulnerabilities. In the authors’ case studies, 6% of SQLIVs remained.

The PSR-Generator is automated; however, the SQLIV line number discovery is not part of

the algorithm and steps for code inspection are carried out via third party tools to gather the

algorithm’s input. Prepared statements are a defense against SQLIAs that change the query

structure by addition of SQL keywords or other values (i.e., the insertion of an additional row

into the database through one vulnerable variable in a row insertion query) and SQLIAs that

result from invalid data values (i.e., an out of range value). Attacks that result from valid data

values are not detected. For example, a query that contains a condition comparing a value to

the result of a sub-query, where the value is of appropriate datatype yet it creates a tautology

(such as in Figure 1.1).

In 2010, Athanasopoulos et al. [69] have applied ISR to separate legitimate client-side

code from potential attacks using a framework that applies to the browser environment Isolation

Operators(IO) and Action Based Policies. The application of an IO, the XOR function,

will randomize and isolate the JavaScript source in a page. Thus, all the JavaScript code is

www.manaraa.com

32

transposed to a new domain, the XOR domain. This differs from ISR methods that randomize

keywords or instructions in that it randomizes the entire source code. The browser must then

deisolate the code to execute the script. The authors have reported low computation overhead,

since XOR is a instruction-set-independent CPU instruction in today’s hardware platforms.

Their framework addresses various types of First Order XSSAs. In the same year, Johns et al.

have proposed a technique “to outfit modern programming languages with mandatory means for

explicit and secure code generation which provide strict separation between data and code” [20].

Thus they address the assumed safety of data other than input that fails to be sanitized as was

done in many previous techniques. They have achieved their technique by creating embedded

syntax in the code, requiring the developer to explicitly create the semantics of the code, and

separating embedded data and code within the application. This static, server-side technique

is used for both SQLIV and XSSV. We classify it as semi-automated since the authors advise

post-parsing review of code.

Code re-write techniques must access the application source code, which is only an

option for developers and typically system administrators. These techniques can find either

vulnerabilities, attacks or both.

2.3.5 Structural matching

Structural matching techniques use structural representation of code or portions of

code for vulnerability or attack detection. One such structure is a parse tree. A parse tree

is an ordered tree representing the structure of a set of symbols (e.g., a string). The parsing

is performed based on the syntax of a language (e.g., SQL). FOID methods use structural

matching to represent the syntactical structure of queries or code, to check for modified or

deviant strings (i.e., strings not following the syntax) which could indicate a vulnerability or

attack.

In 2005, Buehrer et al. [15] have developed SQLGuard to identify and thwart SQLIAs.

Programmers must implement this semi-automated technique via calls to the static class SQL-

www.manaraa.com

33

Guard, which parses and builds strings to represent the query. SQLGuard creates two parse

trees: one for the intended query, one for the actual query. Attack detection is achieved by

comparison of these two parse trees. If they align exactly, the actual query does not contain

an attack. SQLGuard does not account for attacks that do not alter query structures (e.g.,

have identical actual and intended parse trees), but instead inject input values of the expected

datatype that result in attacks. This static (class calls) and dynamic (parse tree comparison)

method adds little overhead. It measures the result of the input instead of attempting to

sanitize the input before executing the query. It still suffers false negatives when an attack

query’s parse tree matches an expected structure. The parse trees are compared at query level

in this server-side technique implementation. Also in 2005, Kruegel, et al. [71] have presented

an anomaly detection system, using various techniques to detect XSSAs. Their system detects

and scores anomalies found in the server log files which must conform to the Common Log

Format. This approach compares HTTP requests and their parameters to program-specific

profiles. Thus, it is a focused analysis when compared to general anomaly detection. Also, for

implementation, the expected structure of the requests must be defined in profiles, thus not

fully-automated. Anomaly scores are calculated with various models, and scores that fall above

a detection threshold are reported as anomalous. This server-side dynamic method requires

profile and threshold definitions and is a runtime technique comparing requests to profiles,

which adds overhead.

In 2006, Su and Wassermann [65] have identified improperly sanitized input as an

antecedent to command injections. SQLCHECK, their hybrid attack detection method checks

for syntactic changes in queries by comparing dynamically queries’ parse trees analogous to [15].

However, their query level method differs from [15] with the use of compiler parsing techniques

and context-free grammars. Calls to SQLCHECK are added manually in this semi-automated

technique. The authors have reported low runtime overhead and no false negatives and false

positives; and they have claimed to be the first to formally define command injection in the

context of Web applications. However, they fail, as does [15], to detect an attack in a query

that adheres to appropriate datatype values, as the attack parse tree structure will match the

www.manaraa.com

34

benign tree structure.

Sania, a hybrid method for SQLIV detection, by Kosuga et al. [14] in 2007, is imple-

mented during an application’s development and debugging phases. First, the tool determines

potential hotspots in an HTTP request where input is added. Next, it generates and inserts an

attack string at the hotspot. Finally, comparison of parse trees of the intended query and the

actual query will deem the hotspot vulnerable (differences found) or not (parse trees match).

This syntactic-based comparison will fail to detect hotspots vulnerable to attacks that use valid

datatype values, as do other parse tree methods, with similarly reported false positives. This

application-level server-side method is semi-automated, requiring an attack code list. Another

parse tree method has been presented by Bandhakavi et al. [4]. They have developed CANDID,

CAN didate evaluation for D iscovering I ntent Dynamically, a dynamic tool that converts Web

applications to safe applications (e.g. by retrofitting code). CANDID is a parse tree method

similar to [15] and [14] in limitations, but differs by computing the symbolic expression of the

query. CANDID mines “programmer intended queries by dynamically evaluating runs over be-

nign candidate inputs” [4]. This server-side, application-level method aims to prevent SQLIAs

and is semi-automated, employing an attack library. This symbolic evaluation is a precursor

the use of concolic methods (previously described in this chapter) where the concrete candi-

date would be used to generate test cases for symbolic variables (along with further symbolic

execution including an automated theorem prover or constraint solver).

In 2008, Johns et al. [72] have created a prototype of a passive server-side XSSA

detection system called XSSDS. This tool compares incoming and outgoing script code in the

HTTP request and response pairs. This method for first order XSSA detection is based on the

observation of a direct relationship between user input and injected scripts: injected scripts

are present in their entirety in both the HTTP request and the HTTP response. Thus, simple

matching of incoming data and outgoing scripts will find such fully contained scripts. Non-

script HTML is ignored. This dynamic, server-side method discovers XSSAs. A 2008 work by

Kemalis and Tzouramanis [29] is SQL I njection Detection System (SQL-IDS), a hybrid static

www.manaraa.com

35

and dynamic method that detects SQLIAs. Each query is intercepted server-side between the

application and database and tested for validity according to a set of specification rules. Once

verified as a non-threat by intended query and actual query syntactic structure comparison

(similar to parse tree methods [15, 14, 4]), it continues to the database. If verification fails

at least one specification rule, the query is marked as an attack and information is logged for

the Web administrator or programmer. In this semi-automated technique, specifications rules

offer chances for attack detection beyond parse tree comparison; however, they require user

specification rule creation. The authors have reported no false positives nor false negatives in

their preliminary experimental outcomes. The SQL-IDS detection itself is query level.

In 2009, Nadji, et al. [40] have designed an XSS defense algorithm, Document Struc-

ture Integrity (DSI). DSI first tracks untrusted data in the server and browser. It syntactically

isolates any user data at the parser level. Then server-specified policies establish the confine-

ment of untrusted data. Finally, the structures of the intended parse tree (without user data

and benign inputs) and the actual parse tree of a Web page are compared. If these structures

are dissimilar, then an attack is detected. This server- and client-side method detects attacks.

That same year, Ter Louw et al. [41] have introduced BLUEPRINT, a tool that aims to min-

imize trust on browser content, applicable to minimizing XSSAs. This algorithm intercedes

the normal flow of HTML through the following: HTML Lexer/Parser, Document Genera-

tor, JavaScript Lexer/Parser, JavaScript Runtime Environment, and Document Object Model

(DOM) API. The goal of the approach is to eliminate dependence on the browser’s parsers that

may produce unreliable results. The HTML parse tree not containing dynamic code will be

constructed on the application server. The client-side browser will generate a parse tree to be

sent to the browser’s document generator without allowing browser parsing. These two-steps

ensure that the intended parse tree, when compared to the actual parse tree, will reveal any

unauthorized script nodes. BLUEPRINT has a server-side component and a client-side script

library contained in each Web page that is output by the program. This dynamic server- and

client-side method will detect XSSAs. Another method comparing structures was presented by

Bisht and Venkatakrishnan [70]. Their server-side framework aims to prevent XSSAs. XSS-

www.manaraa.com

36

Guard dynamically creates the intended pages of an application, including application-intended

scripts, called shadow pages. The server then uses these shadow pages to compare to actual

pages during user browsing. If an unintended script is detected, it is removed from the page

before it can be executed. This dynamic, server-side approach finds and removes XSSAs. Liu,

et al. [64] have presented SQLProb, a SQL proxy-based blocker. This two-phase parse tree

method first collects the query in a proxy between the application and the database and stores

it in a repository. In the query validation phase, user input is extracted to employ an alignment

algorithm for pairwise alignment of the actual query and the queries in the repository, then

this input is validated using a parse tree. The parse tree is traversed depth-first to determine

if the set of leaf nodes representing user inputs is a superset of the expect parse tree leaf node

set, denoting an attack. This query-level dynamic analysis requires no source code access, and

finds SQLIAs to block them. This fully-automated, server-side, blackbox technique is language

independent as well. Detection relies on attacks in which the parse tree structure deviates from

those of benign queries.

The various approaches compare the generated HTML structure, query structure,

or some part of the HTML structure. They compare an expected structure to the actual

structure when the application is executed with test cases or at runtime. Structural matching,

such as parse tree comparison, are successful in finding attacks which alter the structure of

the SQL query or program code; however, attacks that abide by syntax rules and do not alter

query structure can go undetected. Some of these methods do report false negatives and false

positives, lacking desired precision.

2.3.6 Taint analysis

Taint analysis is a dynamic technique that tracks the flow of tainted (possibly altered)

variables through a program. The taint originates in variables that can be influenced by an

external user (e.g., user input) and it is passed through variable manipulations in the program.

Taint analysis considers information flow, while program analysis can consider this flow and

other program behaviors both statically and dynamically.

www.manaraa.com

37

Halfond et al. [7] have introduced in 2006, and refined in a second work in 2008

[6], their highly automated tool to protect existing Web applications from SQLI. In [7], the

authors have presented a dynamic application-level tool, WASP (W eb Application SQL In-

jection Preventer), to detect and prevent SQLIAs on the server. In [6], their framework for

experiments is extended to include more open source applications, generate malicious input for

these applications, and adding to the set of inputs for previous applications. WASP utilizes

positive taint analysis and syntax-aware evaluation. Using positive taint, WASP fetches trusted

values (which are more easily established than pernicious values) from a MetaStrings library

and tracks them through the application to identify trusted parts of a query. The authors of

WASP have reported no false positives. This technique is not fully-automated and requires a

whitelist (of allowable scripts) that we classify as an attack library.

In 2007, Johns and Beyerlein [12] have introduced SMask to address code injection

attacks, including SQLIA and XSSA. Since generic data and executable code are not differen-

tiable from each other, SMask approximates data/code separation using string masking and

requires policy files for attack detection. SMask statically marks intended code in string values,

so that strings injected during an HTTP request will remain unmarked and thus dynamically

detected. This static server-side application-level code-integration approach detects and pre-

vents attacks. Although code instrumentation is automatic, policy files are required for attack

prevention, thus SMask is semi-automated.

Whether tracking potentially malicious taint or positive taint, these techniques for

FOID dynamically detect attacks, SQLIA and XSSA.

2.3.7 Proxy

Not all techniques require fully accessing or executing application source code. In-

stead, some methods intercept the query or data being sent, and using a proxy is a way to

intercept data. Once intercepted, the data is checked to see if it contains an attack using some

pattern matching, thus another method is also applied.

www.manaraa.com

38

In 2004, Ismail et al. [33] have employed a proxy as a means finding XSSVs. Their

method consists of inspecting HTTP response and request, Response Change Mode and Request

Change Mode, respectively. In Response Change Mode, the local proxy checks for the presence

of special characters (e.g.,“<”, “>”). If found, the request is copied to the detection/collection

server and then forwarded; if none found, the request is sent without being copied. Once the

server generates its response, if special characters were present, this response is compared to the

collected request copy for matching special characters. If the response contains these characters,

the server is marked as vulnerable to XSS and the client is sent an escape encoded response. If

the response does not match, it is forwarded normally. In Request Change Mode, the request is

checked for special characters. If found, a copy is saved to the detection/collection server and

randomly seeded sequential numbers are inserted, flanking each parameter. A dummy response

message is generated when this request is sent on to the server. If this dummy response proves

XSS vulnerable, the original request is escape encoded and sent on to the server and the user is

notified via an embedded alert HTML message in the response page. If no XSSVs are detected

the original request is sent on and no message is sent to the user. This semi-automated,

dynamic, client-side system serves to detect XSSVs and inform via the HTML response page

and a central repository.

Kirda et al. [34], in 2006, have developed a browser-reliant method called Noxes to

detect XSSAs. One of the hindrances to detecting XSSAs on the client-side is distinguishing

mischievous JavaScript code from benign code. This Windows-based personal Web proxy

uses both automated and user-defined security rules. The user can define rules manually,

interactively while surfing the Internet, or in snapshot mode where the tool creates rules based

on observing the user’s browsing. Noxes fetches all HTTP requests, checks the policies, then

allows or inhibits the HTTP response. Noxes is a dynamic, client-side XSSA mitigation tool,

which the authors have claimed to be the first client-side solution.

In 2009, Wurzinger et al. [68] have introduced SWAP, Secure W eb Application Proxy.

SWAP consists of a reverse proxy that catches HTML responses and a modified Web browser

www.manaraa.com

39

that detects script content. Client-side deployment of SWAP is transparent but requires al-

terations in Web applications. The reverse proxy relays traffic between the server and clients.

It forwards each response to a JavaScript detection component (a modified browser to inform

about script content) to find embedded JavaScripts, then returns the responses to the browser.

To differentiate benign and malicious scripts, the Web application scripts have been encoded

into identifiers called script IDs, thus any discovered script is considered malicious. This dy-

namic, client- and server-side solution detects and thwarts XSSAs.

Proxy methods can be fully-automatic. Proxies typically detect runtime attacks to

prevent and/or report them, as such, for SQLIA they must reside on the application server, a

proxy server or a database server, and for XSSA, they can reside client-side and/or server-side.

2.3.8 Browser-based

Browser-based method typically apply to XSSD due to the fact that these attacks

typically occur when a malicious script is executed in the end-user’s browser.

In 2007, Garcia-Alfaro and Navarro-Arribas [35] have surveyed approaches for pre-

venting XSSAs against Web applications. They have proposed a server-side security method

using certificates for defining authorization policies and requiring enforcement of such policies

on the client. The authors have implemented policies for prevention of attacks on Firefox, as an

extension to the same origin policy. This dynamic, client- and server-side method does require

compliant client-side browsers. Jim, et al. [36] have presented a browser methodology to allow

or disallow script execution in a tool called BEEP (Browser-Enforced Embedded Policies).

BEEP is a method based on the idea that a Web page can contain embedded policies. These

policies identify which scripts may run on the page. Unauthorized scripts should be devoid

of embedded policy and thus, not executed. Modifications required to implement BEEP in-

clude adding policies to Web applications and support to browsers. This dynamic, client- and

server-side method detects XSSAs. Vogt et al. [37] also have implemented a browser-based

solution for XSS. Instead of relying on a server-side detection, this solution acts on the browser

www.manaraa.com

40

and allows the user to have a protection layer in which to judge the safety of moving on to a

third-party site. Before the user is given the ability to decide, the method itself determines

how the browser uses sensitive data. Sensitive data sources include various HTML objects.

This sensitive data is marked and dynamically tracked through the browser, including through

dependencies. Before that marked data is sent to third site, several options are available from

logging it to stopping it, and prompting the user for a decision. This dynamic, client-side

browser-based solution detects XSSAs.

In 2009, Athanasopoulos et al. [38] have implemented a method to find XSSAs that

bypass previous browser-enforced policies (i.e., [36]). It uses HTML headers to designate ex-

ecute and no-execute policies. Their framework consists of three elements: client-side code

separation (during development client-side code should be separated), client-side code isola-

tion (Web servers should apply isolation operators to client-side code), and action-based policy

enforcement (execute or no-execute). The authors have deployed an implementation of their

browser-dependent method in the Firefox browser and were investigating Safari and Chromium.

Theirs is a dynamic, server- and client-side proposal to detect XSSAs.

In 2011, Stephen et al. [39] have developed an Enhanced XSS Guard Algorithm, E-

Guard. This passive detection system positioned between the browser and Web server applies

to XSS. The goal of the algorithm is to list a Website on a blacklist, whitelist or greylist for

sites. For scripts themselves, there is a blacklist (untrusted scripts), whitelist (trusted scripts)

and grey-based list (undetermined). To evaluate a Website, first, each list is set to empty. Then

the blacklist and whitelist are initially populated manually with known scripts of each type.

Next, the number of whitelist and blacklist scripts are calculated for a site, the majority type

determines the site list type and a tie places the site in the grey list (not yet judged and to

be re-visited after more sites have been categorized). Since E-Guard is a rule-based heuristic,

false negatives may be present, but no false positives. This dynamic client- and server-side,

semi-automated method detects XSSAs.

www.manaraa.com

41

Browser-based methods require specific browser use, browser compliance or continual

updates in accordance with new browser patches and version releases. Browser-side methodolo-

gies have the disadvantage of relying upon Web developers’ and Web browsers’ compliance in

the inclusion of policy information, such as optional tags (e.g., HTTP header field “Referer”

that identifies the requesting site’s address) or overhead added to user Internet browsing by

demanding decisions.

2.3.9 Penetration testing

Used in industry, penetration testing attempts to exploit vulnerabilities in an appli-

cation to reveal its susceptibility to attacks. It is easily applied to the specific security risks of

SQLI and XSS.

MySQL1Injector Web scanner by Bashah Mat Ali et al. [62] in 2010 is an auto-

mated penetration testing tool that dynamically detects SQLIVs in applications. Although not

the first scanner approach, it is among the first non-commercial tools comparing itself to re-

search methods included in this chapter. The scanner injects attacks in PHP-based Websites,

from a list of attacks, to predict the number of infected fields in the database. We classify

MySQL1Injector as semi-automated because it relies on an attack library to detect SQLIVs.

V1p3R (“viper”) [63] is another penetration testing tool. It differs from other penetration test-

ing that randomly generates queries by using a knowledge base of heuristics to inform query

generation. First, viper dynamically gathers information about the structure of the application,

including pages, form actions and links, acting as a Web crawler navigating the pages, following

hyperlinks. Next, the tool traverses the structure to identify HTML form input parameters.

Then viper generates SQL injection attacks from the knowledge base of heuristics. Finally, the

results of the attack are stored in a log file and the information is used to generate new test data

(for the next iteration of attack generation) and to report vulnerabilities. This semi-automated

server-side application level dynamic method tests for SQLIVs.

www.manaraa.com

42

Penetration testing is typically dynamic, only requiring execution of the source code.

A drawback to penetration testing is the reliance on known attacks and/or attack patterns

for testing (unless patterns are comprehensive). MySQL1Injector and viper offer specific vul-

nerability testing, where general penetration testing relies on a knowledgeable tester. Only

vulnerabilities are detected by penetration testing methods.

2.3.10 Blackbox testing

Blackbox testing, similar to proxy-based and penetration testing, does not examine

the application code. It tests the functionality of the application.

In 2012, a blackbox testing tool SENTINEL [66] emerged. It is a tool to find logical

flaws in applications using an Extended Finite State Machine (EFSM) to infer the Web ap-

plication logic from observance of query behavior between the application and the database.

This dynamic, server-side blackbox method does not access source code and is independent of

application language and DBMS. SENTINEL collects the SQL queries and session variables,

thus, it must either run on the server where it can access session variable storage. It creates

SQL signatures by observing runtime benign queries of each source file (training), deriving

their “skeleton structure” and discovering dependencies with other queries. Thus the signature

contains data constraints (found in WHERE clause), the query parameters which give state

and context variable relationships, and data constraints from other queries. Each signature has

an associated set of invariants that is transformed to a function for runtime query evaluation.

If a runtime query’s signature exists and satisfies all invariants, it is deemed safe and allowed to

pass through to the database. Once implemented, the dynamic runtime training and runtime

detection are fully-automatic. In the author’s implementation for PHP, modifications to the

php-mysql module are required for query and data collection. SENTINEL’s goal is to iden-

tify and block malicious queries to prevent SQLIAs. This method does consider sub-queries;

however, it relies on the query structure (SQL signature) and will not detect SQLIAs resulting

from tautologies formed by acceptable input data.

www.manaraa.com

43

Blackbox testing is advantageous when application source code is not available. It is

ideally fully-automatic, and language-independent.

2.3.11 Other techniques

Some notable techniques for XSSA detection use session management [74] and boundary

injection and policy generation [75].

Session management In 2006, Johns has incorporated three server-side techniques

in his SessionSafe tool to render an HTTP session immune to XSS, thus thwarting any would-

be session hijacking [74]. A possible consequence of an XSSA is the unauthorized access to an

application or server resource via user credentials which are contained in a session identifier

(SID). An example of such access is known as XSS session hijacking, where the attacker steals

the victim’s credentials (e.g., cookies) and uses them to reconstruct the HTTP session in which

the user was authenticated to impersonate the victim. Many dangerous scenarios can follow

this session hijacking. SessionSafe strives for XSS-immune sessions to specifically avoid XSS

session hijacking. The tool uses deferred loading, one-time URLs, and subdomain switching in

combination to defend an application. They prevent transmission of the SID, stop recreation of

a session, and limit vulnerabilities impact to vulnerable pages only, respectively. This method

is not intended to replace input and output validation, a key in many Web application security

measures. It is a server-side transparent (does not require code revision) tool that defends

against XSSA.

Boundary injection and policy generation In 2011, Shahriar and Zulkernine [75]

have developed an attack detection server-side technique, S2XS2. This is based on “bound-

ary injection” to encapsulate dynamic content and “policy generation” to verify the data. A

boundary defines expected HTML (e.g., number of tags) and JavaScript content, thus offers

comparison policy information to check against the actual content. If this comparison fails,

an XSSA has been injected. This method entails boundary injection and policy generation,

policy storage, code instrumentation, feature comparison, an attack handler and a boundary

www.manaraa.com

44

remover. Run-time overhead lies only in the comparison and attack handling. Web applications

are instrumented on the Web server, policies are stored there and the comparison component

is server-based. This dynamic, server-side method detects and handles XSSAs.

In summary, SQLIV, XSSV and other vulnerabilities can result from developers’ ignoring

best practices, failing to sanitize user input or improperly sanitizing user input. The naive

approach to simply prohibit scripting or access to back-end database with dynamically created

queries (created at execution time) would result in loss of functionality of a Web application.

With the prevalence of shared Web services, scripting cannot be disallowed. Even with proper

sanitization techniques, the developer cannot predict the next intricate malicious attack from

the relenting attacker. To that end, dynamic techniques using finite libraries of known attacks

will always be incomplete. Static techniques that detect vulnerable input can fail if they

under-approximate the vulnerabilities needing monitoring and cause inefficiency if they over-

approximate. Multiple techniques used in tandem will better cover many instances. The next

section details summaries based on our classifications.

2.4 Summary

In this section we outline observations of classification properties in Section 2.4.1 and

of existing techniques in Section 2.4.2, including discussion of some advantages and disadvan-

tages. In section 2.4.3, we offer guidance on future works addressing FOID with respect to our

classifications.

2.4.1 Classifications

For each classification category, we discuss observed trends among the body of works

classified in Section 2.3.

1. Type. The trend in the classified body of works begins more attack-related, followed

by hybrid and vulnerability methods. Vulnerability detection is the best first line of

defense to inform of vulnerabilities, but does not mitigate them. Hybrid methods that

first detect vulnerable code hotspots, then add sanitization code or check for runtime

www.manaraa.com

45

attacks typically do so to lower overhead; however, implementation can be expensive or

complex and may limit desired non-malicious functionalities.

2. Granularity. Techniques typically are application-level, which allows for some form of

code analysis and a knowledge of the application itself to better safeguard against vulner-

abilities and attacks. Query level methods (for SQLID) have the advantage that they can

be language-independent and DBMS-independent, applied to attack detection [64, 66] or

vulnerability detection [28]. With ease of use and non-restrictive applicability, query level

methods are preferable, especially if source code is inaccessible.

3. Location. Typically FOID tools reside server-side on the application server, proxy server,

or database server (for SQLID). For both SQLID and XSSD, browser-side methods may

insert attack vectors to detect vulnerabilities, while for XSSD alone browser-side methods

can monitor the user’s Web browsing experience to detect and thwart attacks or monitor

responses from the Web server. XSSD, specifically XSSA detection, techniques lend to

client-side and hybrid client- and server-side methods since the malicious code is typically

executed in the browser.

4. Level of Automation. Fully-automated solutions are preferable for many reasons,

primarily ease of use; however, they do not offer the most precision. For most of these

methods, code must adhere to a specific configuration or set of rules, often following

good programming practices and such sites are likely to begin with fewer vulnerabilities,

since poor programming practices can contribute to vulnerable code. Semi-automated

solutions may rely on attack libraries, rule sets, or user-defined attack information which

may be limited, requiring additions or updates, or user intervention.

5. Test Case Source. When an attack library is used, whether it is limited or sufficient,

the method can only be semi-automated. As long as the library is sufficient for all cases, a

semi-automated tool may be preferable over one with fully-automated test case generation

that fails to cover necessary cases. Methods employing automatically generated test cases

with sufficient coverage that do not require other user information or interaction (fully-

www.manaraa.com

46

automated) are equally preferable.

2.4.2 Techniques

This section outlines techniques used in the related works, some drawbacks and some

benefits of each to inform future solutions.

1. Testing. Testing-based techniques generally look for vulnerabilities and typically do so

prior to deployment of a Web application to inform the system administrator or developer

of poor coding practices or other security holes in the application code. More automation

(in terms of automatically generated test cases) is preferable for ease-of-use over user-

defined attacks and predefined libraries; however, sufficient coverage is key. Techniques

that first test, then instrument code for runtime attack detection need not be excluded

from future research with improvements on testing and runtime monitoring techniques.

2. Program analysis and taint analysis. Since program analysis techniques evaluate

the program’s behavior, they typically analyze where vulnerabilities exist. Attack detec-

tion, which occurs at runtime, would require additional steps and the overhead would

be prohibitive. Like testing, program analysis can offer an off-line analysis vulnerability

detection within an algorithm that also detects attacks.

3. Model checking. Model checking is a formal technique that produces counterexamples

based on errors when checking the model of a system against some specifications. For

vulnerability detection methods, model checking allows for precise error detection based

on the logic of the code, generally performed pre-deployment avoiding extra overhead; for

hybrid detection it is an effective first step. The resulting counterexamples allow precision

in locating error sources, not symptom propagation sites, thus code instrumentation (if

present) is minimized.

4. Code re-write. Code re-write requires source code additions or amendments. Ap-

proaches that use APIs and/or attack libraries, augment SQL query keywords or re-write

queries as prepared statements have a complex implementation and still leave suscepti-

www.manaraa.com

47

ble code. In the case of most SQLID techniques, attacks may guess the SQL keyword

augmentation or create attacks without keywords to circumvent these countermeasures.

5. Structural matching. Techniques using structural matching typically compare the

intended code and/or query structure (derived previously and stored or constructed at

runtime) with the actual code and/or query structure at runtime. These techniques are

effective for detecting structural altering attacks; however, alone they are insufficient for

assuring application safety, yet could still be viable a step of a more inclusive algorithm.

Drawbacks include the added runtime overhead, for some SQLID methods the need for

platform specific tools for extracting the query from the application and for some XSSD,

extracting and comparing entire document structures.

6. Penetration testing. System administrators and developers use penetration testing

(pen testing) to find vulnerabilities. Research also has used pen testing to discover vulner-

abilities. Like other vulnerability detection techniques (e.g., model checking) pen testing

offers error detection as part of a multi-step algorithm to detect and prevent SQLIAs.

7. Blackbox. Some typical advantages to blackbox testing techniques are the following:

they are language-independent, they do not require source code access, and they are fully-

automated. Some fully-automated approaches based on other techniques listed in this

section are language-dependent. Blackbox testing can overcome this dependence often

with an easily implemented tool; however, some still require access to language-specific

system files and/or code modules.

8. Other techniques. Proxy methods are used for SQLIA and XSSA detection. Proxy

methods can be code- and DBMS-independent, making proxy-based tools easy to im-

plement. Browser-based methods are more adequately used to detect XSSV and XSSA,

due to the nature of XSS. Detection systems have been applied to XSSA detection; they

represent where research meets industry and could easily become commercialized tools.

www.manaraa.com

48

2.4.3 Conclusions

We have presented a comprehensive classification of FOID techniques. Kindy and Pathan [59]

have presented a survey of attacks, vulnerabilities and detection techniques. They categorize

methods into two sets, vulnerability detection or countermeasures (attack detection possibly

preceded by vulnerability detection). Johari and Sharma [60] have described and reviewed a

sample of SQLID works, concluding that SQLIDs have general weaknesses, among which in-

clude runtime overhead and invasive user interaction. However, they have not outlined these

for each work, as we have.

Since we cannot mitigate all risks or thwart all attacks, we should aim to minimize them.

Even with current protective measures, a malicious user could still construct more complex at-

tacks. Injection attacks will persist as long Web sites with database connectivity allow searching

and updating and exist in their current configurations. There are no existing techniques to elim-

inate all vulnerabilities or attacks. Even extreme limitation of access wherein only hard-coded

queries or scripts are executed may have security breaches for the savvy attacker to exploit and

would seriously hinder the user’s Web experience and encumber the developer.

We observe different characteristics and sets of characteristics among the works classified.

Hybrid types for FOID are promising with vulnerability detection to find code and/or query

weaknesses followed by attack detection (e.g., monitors placed in the code only at vulnerable

spots). Dynamic methods and the dynamic phase of hybrid methods should ensure that they

do not incur too much overhead. Fully-automated and semi-automated solutions are viable for

future research as long as predefined attack libraries and test case generation ensure sufficient

coverage. SQLID approaches should be server-side, except in cases for SQLIV where the tool’s

methodology allows for browser-side use (e.g., pen testing). XSSD approaches can be client-

side, server-side or a hybrid. Although application level methods are prevalent, this need not

be the case in future works as query level solutions for SQLID are also suitable.

www.manaraa.com

49

We have defined a classification for FOID and used this to categorize a representative

sample of related works. Finally, we have presented observations of the classified techniques.

Our hope is that this classification and evaluation of existing techniques will serve as to inform

for future work addressing FOID. In seeing the techniques applied, the characteristics that

various solutions possess, researchers can aim to improve upon certain characteristics or to

develop a solution with a specific set of characteristics. We have implemented a query level

vulnerability detection method for SQLI, presented in Chapter 3 and an application level hybrid

method to address XSS in Chapter 4.

www.manaraa.com

50

CHAPTER 3. ANALYSIS & DETECTION OF SQL INJECTION

VULNERABILITIES VIA AUTOMATIC TEST CASE GENERATION OF

PROGRAMS

In this chapter, we present a query level technique to analyze and detect tautology-based

First Oder SQL Injection Vulnerabilities. It distinguishes itself from other similar methods that

utilize query syntax structure in their solutions by also accounting for the semantics of the query

and query dependencies. Our novel technique identifies the possibilities of such attacks. The

central theme of our technique is based on automatically developing a model for a SQL query

such that the model captures the dependencies between various components, e.g. sub-queries,

of the query. We, then, analyze the model using CREST1 test case generator and identify

the conditions under which the query corresponding to the model is deemed vulnerable. We

further analyze the obtained condition-set to identify its subset; this subset being referred to

as the causal set of the vulnerability. Thus, our technique considers the semantics of the query

conditions, i.e., the relationship between the conditions, and as such complements the existing

techniques which only rely on syntactic structure of the SQL query. In short, our technique

can detect vulnerabilities in nested SQL queries, and can provide results with no false positives

and false negatives when compared to the existing techniques.

The rest of this chapter is organized as follows. Section 3.1 briefly reviews SQLI, de-

scribes query dependencies and introduces our technique. Section 3.2 describes our technique;

especially (a) the technique for translating SQL queries to corresponding C-program, (b) the

application of CREST for obtaining conditions of injection vulnerability, and (c) the analysis

technique deployed to obtain the minimal causal set. Section 3.3 presents advantages of our

1CREST: Automatic Test Generation Tool for C. Available at http://code.google.com/p/crest/.

www.manaraa.com

51

proposed technique and results of its evaluation. Finally, Section 3.4 concludes the chapter.

3.1 Introduction

SQL Injection Attacks occur when malicious code is injected into a SQL query that

is executed and allows unauthorized access to data or system resources. When a SQLIA is

launched by exploiting a vulnerability in a Web application, the malicious data is inserted via

Web page input and becomes part of some SQL query code in the application. The application

with the newly injected code is sent to the Web server, and subsequently the query is executed

on the back-end database that resides on the Web server or on a database server. The attack

is successful if the input is not properly sanitized before being injected into a query or before

being executed on the database.

Our approach includes a static server-side approach using testing to find First Order

SQLIVs. We first model the query then evaluate for conditions in which the WHERE

clause(s) of the query could contain a tautology. Thus, it is susceptible to an SQLIA. The

first step in modeling the SQL query is breaking down its SQL keywords. A basic query form is

the following: SELECT fieldname-list FROM tablename WHERE (condition1 AND/OR

condition2). In the query’s WHERE clause, a condition contains the comparison describing

(a) desired value(s) of a field in a table within the database. Rows with fields that satisfy the

WHERE clause are returned as result of the SQL query. We will consider a simple equality

constraints in a condition to explain our method.

In the query SELECT Last Name, First Name FROM User WHERE (Status field

= $status), the condition “Status Field = $value” contains $value that may be user sup-

plied or dependent upon user-supplied data. If $value can contain a tautology due to user

input, then the query is vulnerable to SQLI and the condition Status Field = $value is the

vulnerable condition. Sanitization methods may help secure the query from some tautology-

based attacks by blocking keywords and escaping special characters. There are some queries

susceptible to tautology-based attacks from user input that does not contain keywords or special

www.manaraa.com

52

characters, but legitimate values that can lead to SQLIA.

It is noted that fields to be returned that are listed after SELECT and tables listed after

FROM are of no consequence in the creation of a tautology for the basic query. Only when

the query is complex, containing sub-queries can the fieldname-list of the SELECT clause

play a role in a tautology. An example is the following: SELECT Last Name, First Name

FROM User WHERE (Username = $username AND 1 < (SELECT COUNT (Lo-

gin Date) FROM Login Log WHERE Username = $username)). Here the query contains a

nested sub-query. The result of that sub-query, the returned aggregate function value of the

SELECT statement becomes the value of a condition in the WHERE in which it is nested.

Thus the SELECT clause is of consequence in the model. Sanitization methods on user input

influenced values (here $username) may not prevent a tautology in the condition containing

the sub-query.

Our technique addresses the tautology-based attack that sanitization methods can fail

to catch. Existing SQLID sanitization techniques are based on syntactic differences due to the

insertion of SQL keywords and may check for valid data values. These methods that check for

unexpected values and/or SQL keywords will fail to detect a tautology created by appropriate

data values. Thus, they are susceptible to both false positives, identifying benign queries as

attacks, and false negatives, identifying attacks as benign queries. Our method evaluates the

dependencies between conditions in the SQL queries, especially when the query is nested.

Another advantage of our technique is that, we can automatically identify the conditions

under which vulnerabilities in the query can be exploited to realize a SQLIA. We refer to these

conditions as the causal set. The query inputs, at runtime, can be checked against the causal

set; if the check is successful, then the query input is deemed malicious, otherwise, the input is

benign.

The causal set gives the following advantages: (a) the conditions in the runtime execution

of the SQL query can be verified against the conditions in the causal set and (b) the execution

www.manaraa.com

53

can be identified to exploit a SQL vulnerability if the conditions in the causal set are satisfied.

The contributions of our approach are summarized as follows:

Contributions

1. We propose a new approach for SQLID that analyzes the semantic dependencies between

SQL query conditions and does not rely solely on syntactic structure of the query.

2. Our approach is complementary to the existing techniques for SQLID and leads to an

effective detection mechanism for SQLIVs. Since our technique is based on the semantic

dependencies, it does not have any false positive or false negative results.

3. We provide a novel technique to reduce various cases that can lead to SQL injection and

automatically combine these cases into a succinct summary. The succinctness allows for

easy understanding of the query vulnerability and facilitates efficient monitoring of the

user inputs that can lead to exploitation of the vulnerability. We refer to the summary

as the causal set.

3.2 A method for detecting SQL injection vulnerabilities

In this section, we describe our technique. It consists of the following three main steps:

1. We compile SQL queries to a target language (in our case C) such that the dependencies

between query conditions at various locations in the query are faithfully captured;

2. We apply an existing test generator (in our case CREST) to obtain the test cases that

correspond to valuation of conditions at different locations leading to possible injection

vulnerability exploitation;

3. We analyze the test cases to identify the cause of the vulnerability that can be effectively

used during run-time monitoring of the query-executions.

www.manaraa.com

54

3.2.1 Translating SQL query conditions to C-programs

In this section we describe the first step of our technique in which we translate queries.

The primary objective of our translator is to generate a program (essentially using if-control

construct) which captures the valuations of the conditions at different locations in the query

(associated to the WHERE clause) and their inter-dependencies that can maliciously affect

the query result. In describing our technique, we will consider the following types of conditions:

atomic conditions of the form “X = Value”; belongs-to conditions of the form “X IN (some

nested query result)”; and boolean combination (conjunction, disjunction, negation, etc.) of

the above conditions. Other forms of conditional expressions can be translated by following

appropriate rules of translation found in Algorithm 1.

In the event the WHERE condition is atomic, the query becomes vulnerable whenever

the condition (after code injection) at that location becomes a tautology. We do not consider

the valuation of the exact condition in the query; instead, we are interested in the valuation

of the condition (after code injection) at the location where the original condition was present.

For example, for an atomic condition “X = $input” in a WHERE clause of the query, we say

that WHERE clause contains a location (say, c) that holds an atomic condition dependent

on user input and may be affected by the user. The user can make this condition a tautol-

ogy by providing an input such that “$input =‘’ OR ‘1’=‘1’--’”. Observe that the user

input makes the original condition non-atomic (by adding a disjunction); however, we are not

concerned with this exact change. We simply detect that the location c (where a user-input

dependent condition is present) contains a condition that has become a tautology.

Similarly, for a conjunctive condition, we are interested in finding out whether the con-

ditions at any one of the locations (say c1 and c2) which contain the conjuncts can be made

a tautology. This is because if any one of the conjuncts at a location (e.g., c1) becomes a

tautology while the other (c2) is not a contradiction, then the query result is affected by the

condition at c1. A simple and commonly used example illustrating this scenario is as follows.

SELECT name FROM users WHERE user = ‘$input1’ AND passwd = ‘$input2’.

www.manaraa.com

55

SELECT X1 FROM T1, T2

WHERE Y11 = $input11 AND Y12 = $input12

AND Y13 NOT IN

SELECT X2 FROM T3, T4

WHERE Y21 = $input21

OR Y22 = $input22

Figure 3.1 SQL query with nested sub-query

In this query, there are two locations c1 and c2 for possible injection. If the user provides

$input2 such that it is equal to “’OR ‘1’ = ‘1’”, the query becomes SELECT name FROM

users WHERE user = ‘$input1’ AND passwd = ‘’ OR ‘1’ = ‘1’. Thus the user can

access entries in the table without proper authorization. This intrusion is allowed as long as

no other condition, i.e., at location c1, becomes a contradiction, in which case the result of the

query is an empty set. Similar arguments can be provided for the dual operation: disjunction.

Replacing the AND with OR in will result in a disjunction and will result in a tautology in

the WHERE clause.

Figure 3.1 presents an example SQL query with a nested sub-query which we use to de-

scribe our technique. Notice the query has four user-input “locations” where the code injection

can occur. We denote these locations as c11, c12, c21 and c22 corresponding to the user-input

dependent conditions “Y11 = $input11”, “Y12 = $input12”, “Y21 = $input21” and “Y22 =

$input22”, respectively. There is also one condition that relies on the results of the sub-query,

c13 corresponding to “Y13 NOT IN (results from sub-query) ”. The variables containing

the input are $input11, $input12, $input21 and $input22 and the query is exploited via a

tautology-based SQL injection attack if one of the following holds with actual user inputs:

1. The condition at location c11 becomes a tautology, condition at location c12 does not

become a contradiction, and disjunction of the conditions at locations c21 and c22 does

not become a tautology;

2. The condition at location c12 becomes a tautology, condition at location c11 does not

www.manaraa.com

56

become a contradiction, and disjunction of the conditions at locations c21 and c22 does

not become a tautology;

3. The conditions at locations c11 and c12 do not become contradictions, and disjunction

of the conditions at locations c21 and c22 becomes a contradiction.

Proceeding further, for conditions that depend on nested sub-queries (belongs-to), we

say that if the sub-query is affected by some code-injection then the belong-to condition is

also affected. The query in Figure 3.1 will be used throughout to describe our technique. If

conditions at locations c21 and c22 evaluate to a contradiction (due to code injection of the

form 0 = 1), the condition at location c13 (associated with “Y13 NOT IN ...”) becomes a

tautology.

Algorithm 1 presents our translator. It takes as input a SQL query and generates program

code. The first step, as noted above, is to gather the locations c of conditions associated with

the WHERE clause of the query (Line 2). Then a subroutine TRANSLATE, with the condition

location c and query q as parameters, is invoked (we have overloaded q to denote a query

and also a variable to capture how the query is affected by the conditions in its WHERE

clause). As outlined above, the algorithm recursively explores the query condition-locations

(conjunctions, disjunctions, etc.) and, wherever necessary, analyzes the locations of subquery

conditions (e.g., at Lines 23, 28). Note that if there exists a conjunctive condition at location

c, we represent it as AND of the corresponding locations holding the conjuncts (see Line 10).

Similarly, if there exists a disjunctive condition at location c, we represent it as OR of the

corresponding locations holding the disjuncts (see Line 17).

Example 1 Figure 3.2(a) presents the recursive exploration of query in Figure 3.1 by the

translation algorithm. In the figure, c11 denotes the location for the condition Y11=$input1,

c12 denotes the location for the condition Y12=$input2, c13 denotes the location for the con-

dition Y13 NOT IN ..., c21 denotes the location for Y21=$input21, and finally c22 denotes

the location for Y22=$input22. Each condition location can either take the valuation (a) taut,

denoting that the condition at that location has become a tautology; or (b) cont, denoting that

www.manaraa.com

57

Algorithm 1 Query Translator

1: procedure Translate(q)
2: Obtain condition-locations c associated to WHERE clause;
3: Translate(c, q);
4: end procedure

5: procedure Translate(c, q)
6: if c is atomic then
7: print if (c == taut) q = taut;
8: print if (c == cont) q = cont;
9: end if

10: if c := c1 AND c2 then
11: Translate(c1, q1); Translate(c2, q2);
12: print if (q1 == taut && q2 != cont) q = taut;
13: print if (q2 == taut && q1 != cont) q = taut;
14: print if (q1 == cont) q = cont;
15: print if (q2 == cont) q = cont;
16: end if
17: if c := c1 OR c2 then
18: Translate(c1, q1); Translate(c2, q2);
19: print if (q1 == cont && q2 == cont) q = cont;
20: print if (q1 == taut) q = taut;
21: print if (q2 == taut) q = taut;
22: end if
23: if c := V IN qk then
24: Translate(qk);
25: print if (qk == taut) q = taut;
26: print if (qk == cont) q = cont;
27: end if
28: if c := V NOT IN qk then
29: Translate(qk);
30: print if (qk == taut) q = cont;
31: print if (qk == cont) q = taut;
32: end if
33: if c := V > qk then
34: Translate(qk);
35: print if (qk == taut) q = cont;
36: print if (qk == cont && V > 0) q = taut;
37: print if (V < 1) q = cont;
38: end if
39: if c := V < qk then
40: Translate(qk);
41: print if (qk == taut) q = taut;
42: print if (qk == cont) q = cont;
43: print if (V < 1) q = taut;
44: end if
45: end procedure

www.manaraa.com

58

c12 q12

c11 & c12 & c13 q

c11 q11 c12 & c13 q123

c13 q13

c21 | c22 q13

c22 q22c21 q21

0. variable declarations, initializations

1. if (c11 == taut) q11 = taut;

2. if (c11 == cont) q11 = cont;

3. if (c21 == taut) q21 = taut;

4. if (c21 == cont) q21 = cont;

5. if (c22 == taut) q22 = taut;

6. if (c22 == cont) q22 = cont;

7. if (q21 == taut) q13 = cont;

8. if (q22 == taut) q13 = cont;

9. if (q21 == cont && q22 == cont) q13 = taut;

10.if (c12 == taut) q12 = taut;

11.if (c12 == cont) q12 = cont;

12.if (q12 == taut && q13 != cont) q123 = taut;

13.if (q13 == taut && q12 != cont) q123 = taut;

14.if (q12 == cont && q13 == cont) q123 = cont;

15.if (q123 == taut && q11 != cont) q = taut;

16.if (q11 == taut && q123 != cont) q = taut;

17.if (q123 == cont && q11 = cont) q = cont;

// For SQL injection requirement

18.assert(q != taut);

12

1

4

9

6

10
13

18

15

(a) (b) (c)

Figure 3.2 (a) Possible execution tree of Translate; (b) Result of translation; (c) Partial

execution graph explored by CREST.

the condition at that location has become a contradiction; or (c) remain unchanged (denoting

no code injection). In addition to q and q13, which capture whether the top-level and the nested

queries, respectively, are affected by their corresponding WHERE conditions, there are several

other “q**” variables used as intermediate data variables in the translator. Figure 3.2(b) shows

the code generated as a result of the translation.

We say that the injection vulnerability is exploited if the valuation of conditions at

locations related to user inputs are such that the program resulting from translation violates

the assertion on q, the top-level query (Line 18 in Figure 3.2(b)).The following theorem states

the correctness of the above claim.

Theorem 1 (Sound and Complete Translation) Given a program P generated by Algo-

rithm 1 from a query Q, there exists some execution path in P where q evaluates to taut at

the program’s exit point if and only if there exists some combination of valuations of query

conditions at different locations that maliciously affects the result of Q.

Proof The proof follows directly from the semantics of the conditions and their effect on the

queries. If the query condition is conjunctive, then the query is affected only when the condition

in at least one of the locations becomes a tautology while conditions at other locations are not

www.manaraa.com

59

contradictions. This is carefully captured by the translation algorithm and appropriately used

to generate the corresponding code. As a result, the program P will have an execution path

which makes q (the program variable used to capture SQL injection attack at the top-level

query Q) to be equal to a tautology. The similar argument holds for disjunction. The query

condition containing the set condition belongs-to (V IN qk) will be a tautology if the result of

the subquery, qk is a tautology. In this case, the program P will have an execution path making

q tautology. The negation of belongs-to follows the same argument. For the query conditions

containing a range condition, a value is checked against a subquery (e.g., value V greater-than

(>) qk). For this case, if the subquery returns a contradiction and the value is greater than zero, then

this condition returns a tautology. The program P will have an execution path that makes q a tautology.

The other range condition argument is similar. Thus for the various query conditions, we will have an

execution path leading to a tautology.

The above theorem ensures that there exist no false positives or false negatives in our analysis.

In the next section we describe the test step of our method.

3.2.2 Application of CREST

We use CREST, an automatic test generation engine for C programs, to analyze the program.

We consider the assertion that q does not evaluate to taut at the exit of the program (Line 18 in

Figure 3.2(b)). The program keeps all variables uninitialized. More specifically, uninitialized variables

are declared as CREST variables, which allows CREST to choose different valuations of these variables

to generate test cases that violate the assertion. At its core, CREST relies on concrete and symbolic

(concolic) execution of programs to maximize exploration of branches in a program and identify assertion

violations (if they exist). Concolic testing utilizes a combination of concrete and symbolic execution

to generate test cases and to effectively guide exploration of the new program paths, respectively. In

concolic testing, a random test case is generated and the test program is executed with that concrete

value. When the program encounters a conditional statement (e.g., instrumented assertions) these

become the symbolic constraints. The concrete and symbol constraints are solved simultaneously to

create a new test value and to continue creating new branches to test, until no new branches can be

created. As long as the branches are finite in number and finite in length, i.e., not recursively infinite,

we are assured extensive branch coverage with this testing technique. In the event the program does

www.manaraa.com

60

not contain any loops (as is the case of the result of our translations), CREST can potentially explore

all possible branches and therefore can generate all possible test cases that lead to assertion violation.

Each test case assigns some values to the CREST variables and these values denote the conditions

under which q evaluates to taut, i.e., a vulnerability is exploited.

Example 2 Figure 3.2(c) shows some of the execution traces of the program in Figure 3.2(b) explored

by CREST to generate test cases (each node in the trace denotes a line number of the program). The

execution traces 1-4-6-9-10-12-15-18 and 1-4-6-9-10-13-15-18 correspond to the test case where c11, c12

are tautologies and c21, c22 are contradictions. Note that CREST may not assign taut or cont to all

variables while generating a test case. For instance, the path 1-4-6-9-13-15-18 corresponds to the test

case where c11 is a tautology and c21, c22 are contradictions. The variable c12 remains uninitialized;

we will refer to such values as unin.

In the next section we discuss the causal set.

3.2.3 Causal set detection: reductions

In the above sections, we have presented how the CREST test case generator can be used effec-

tively to identify injection-causing requirements (i.e., the valuation of conditions at various locations).

At runtime, when the user inputs are provided, they are monitored to check whether any of these re-

quirements are satisfied. Any user input that satisfies at least one requirement will be deemed intrusive

and the query will not be allowed to execute with the input, thus stopping a SQLIA. While CREST

generates all possible requirements in terms of condition valuations at each location, the number of

such requirements may be large, and therefore it may be ineffective to verify user inputs against each of

the requirements one at a time. For instance, CREST identifies eight different cases, corresponding to

the case where the condition at location c12 is tautology. Similar cases are obtained when conditions

at locations c11, c21, or c22 become either tautologies or contradictions. In the table of Figure 3.3),

we list the values of the conditions under which injection-vulnerability can be exploited in the query.

The summary of these cases is that after the user provides some input, the condition at location c12

becomes a tautology, the condition at location c11 does not become a contradiction, and disjunction of

the conditions at locations c21 and c22 does not become a tautology.

In this section, we present a reduction mechanism which results in a summarization of all cases

obtained from CREST. The proposed succinctness achieves two advantages. First, the succinctness

www.manaraa.com

61

permits efficient monitoring of user inputs at runtime. Second, it removes all redundancies in the

conditions, thus allowing the developer to understand the root cause of the SQL injection vulnerability

in the query and to take appropriate corrective measures.

Decision tree representation of vulnerability requirements. Recall that a vulnera-

bility requirement is given in terms of valuation of conditions at different locations of the query under

consideration. The domain of valuation D is {taut, cont, unin}. Each requirement can be viewed

as a conjunctive formula where each conjunct corresponds to a valuation of a condition at a particular

location. For instance, one of the requirements is

c11 = taut ∧ c21 = unin ∧ c22 = cont ∧ c12 = taut

That is, the conditions at locations c11 and c12 are tautologies, the condition at location c21 is unini-

tialized (i.e., not adversely affected by user input) and the condition at location c22 is a contradiction.

The set of all requirements is therefore a disjunction of conjunctive formulas representing individ-

ual requirements. Such formulas can be represented using a (3-valued) decision tree where each node

in the tree corresponds to one of the location variables and directed edges from a node represent its

valuation. The edges are labeled with items ∈ D. The ordering in which variables appear in the tree

is pre-specified and the leaf node is termed T (true) node. A path from the root to the leaf in the tree

corresponds to a conjunctive formula, which in turn corresponds to one possible valuation of the location

variables as described by some requirement. Figure 3.4 presents a 3-valued decision tree representing

the injection-requirements shown in the table (Figure 3.3).

c11 c21 c22 c12

taut cont cont taut

taut cont unin taut

taut unin unin taut

taut unin cont taut

unin cont cont taut

unin cont unin taut

unin unin unin taut

unin unin cont taut

Figure 3.3 Requirements

www.manaraa.com

62

unin

C12

T

taut

C12

T

taut

C12

T

taut

C12

T

taut

C12

T

taut

C12

T

taut

C12

T

taut

C12

T

taut

C21

C22

unin

C11
taut unin

unin cont

C21

cont cont

unin
C22

cont unin
C22

cont

unin
C22

cont

Figure 3.4 3-valued Decision Tree

taut

C11

C21

C12

T

not(cont)

C22
not(taut)

not(taut)

Figure 3.5 3-valued Decision Diagram

Decision trees to Decision diagrams. Decision trees can be reduced to decision diagrams

which removes all duplications and redundancies from the decision tree taking into consideration the

semantics of boolean operations (conjunction and disjunction) over the domain of the decision tree

node-values (D in our case). [76]. We present rules for reducing our 3-valued decision tree to a 3-valued

decision diagram in Figures 3.6(a), 3.6(b) and 3.6(c).

The first rule (Figure 3.6(a)) states that if there is a node c1 such that all its three branches go

to the same node c2, then the valuation of the node c1 is not relevant, i.e., there exists some specific

valuations for all variables other than c1 such that for all possible valuations of c1, there exists an

injection-causing requirement. In this case, node c1 can be removed and all incoming edges to c1 are

www.manaraa.com

63

Tests

C1

C2

c
o
n
t

u
n
i
n

t
a
u
t C2

Remove

Redundant Test Values

C1

C2

u
n
i
n

V

C2

C1
if (V=taut) then
 not(cont)
else not(taut)

Generalize

Tests

C

C2

V1
V2

C1

C
V2

V1

Ci Cj Ck Ci Cj Ck

C

C1 C2

V1 V2
Remove

Duplicate

Figure 3.6 Rules for (a) redundant tree removal; (b) generalization of test values; (c) removal of du-

plicate test values

redirected to its child-node (c2). This rule is commonly referred to as redundant test removal.

The second rule (Figure 3.6(b)) corresponds to the case when there exists a node c1 in a path

where one of its branches is labeled with unin and the other labeled with V (which is equal to either

taut or cont), and both branches lead to the same node c2. In that case, the two branches from c1 are

merged to reflect that the valuation of c1 is not equal to the negation of V. This merging follows from

the fact that if there are at least two paths in the decision tree, one where c1 is equal to taut (or cont)

and the other where c1 is equal to unin, and all other node values remain the same, then the valuation

of c1 in these paths is equal to not(cont) (or not(taut)). We refer to this rule as generalization. The

generalization rule depends on the domain and semantics of the valuations in a multi-valued decision

tree/diagram.

Finally, the third rule (Figure 3.6(c)) corresponds to at least two identical subtrees/graphs that

are rooted at two different nodes. In that case, one of the nodes is removed and all incoming edges to

the removed node are redirected to the one that is not removed. This rule is referred to as duplicate test

removal.

The application of the above rules converts a 3-valued decision tree to a 3-valued decision diagram

(a DAG). Figure 3.5 presents the 3-valued decision diagram obtained from the decision tree in Figure 3.4.

The steps that lead to the decision diagram are summarized as follows. Using the rule to remove duplicate

tests where the test node does not have any children, only one node T is allowed in the decision diagram.

All but one c12 nodes are removed from the decision tree (duplicate test removal). Similarly, there are

four duplicate subtrees rooted at c22 and as such three of them are removed. The node c22 has two

branches, each going to the same node c12, and as such the branches are merged (generalization) to

not(taut). Similarly, duplicate test removal and generalization are applied to nodes c21 and c11 to

obtain the decision diagram.

www.manaraa.com

64

The decision diagram states that SQL injection vulnerability can be exploited by user inputs which

make (a) the condition at location c12 a tautology, (b) the condition at location c11 not a tautology, and

(c) the conditions at locations c21 and c22 not contradictions. This is concise and precise representation

of the injection requirements shown in the table of Figure 3.3. In essence, the decision diagram captures

the causal set of requirements. Note that for ease of explanation, in Figures 3.3, 3.4 and 3.5, we have

shown one small set of requirements in the table and the corresponding decision tree and diagram. The

size of the table is much larger for our example; the reduction due to summarization to a causal set

obtained by generating the corresponding decision diagram, therefore, is significant.

The reduction algorithm for obtaining a decision diagram from a decision tree is well-studied [76].

It is based on recursive backward exploration of the decision tree and has a complexity of O(N log(N)),

where N is the total number of nodes in the decision tree. One of the challenging aspects of decision

diagram is the order of the nodes (e.g., we considered the ordering c11 followed by c21, followed by c22,

followed by c12) that will result in the smallest possible decision diagram corresponding to a decision

tree. It is computationally expensive (NP-Complete). However, we can leverage different heuristics [73]

that have been proposed to efficiently produce a “good” ordering of variables.

3.3 Method evaluation

As proved in Section 3.2 (Theorem 1), our technique does not have any false positives or false

negatives (for the SQL queries syntax considered for translation). Additionally, we have claimed that

our technique is likely to capture in a succinct fashion the core conditions (causal set) which, when

satisfied by the user-inputs, will cause a SQL injection attack. In the following, we will use some sample

examples to show that our claim holds true in practice.

The SQL query in Figure 3.1 contains four locations where user-inputs can affect the conditions.

As each of the locations can take up one of three values (taut, cont and unin), there are 34 different

test inputs. CREST can identify around 28 different injection-causing test cases (see Figure 3.3 for

test cases corresponding to c12 = taut). However, our technique of reduction obtains only 4 different

elements in the causal set. In short, our technique results in 85% reduction. Next, consider the SQL

query in Figure 3.7

Similar to the previous example, this query also has four locations where user inputs affect the

conditions; however, the dependencies between these locations are different from those in the previous

www.manaraa.com

65

SELECT deductible

FROM policy as p

WHERE inputPolicy = $input11 OR id = $input12

UNION

SELECT d.insuredname

FROM dependents as d

WHERE inputPolicy = $input21 OR id = $input22

Figure 3.7 SQL query with UNION

example. CREST obtains thirteen different injection causing test cases, while our technique correctly

identifies the causal set to contain cases where at least one of the locations result in a taut condition,

and reduces that number to four (about 69% reduction).

In summary, our proposed technique has two main advantages. It does not produce any false

positive or false negatives. It produces results that capture exactly the cause of SQL injection with

respect to user inputs. The causal set is, therefore, precise and succinct, making it easier to monitor

for injection-causing user inputs and also to take appropriate corrective measure in the event of an

injection.

3.4 Conclusions

We have shown that our technique is at the same time more general and more precise than the

existing techniques, as it relies on semantic dependencies between the conditions that are affected by user

inputs. This method specifically focuses on SQL query vulnerabilities that are exploited by injections

that lead to tautologies in query conditions.

www.manaraa.com

66

CHAPTER 4. DETECTING CROSS-SITE SCRIPTING

VULNERABILITY USING CONCOLIC TESTING

In the previous chapter we have presented a query level technique to analyze SQL queries and

monitor for vulnerabilities. SQL queries are often embedded in a source language in a Web application.

In this chapter, we present our application level testing tool approach that serves as the first line of

defense in detecting vulnerabilities and informing selective instrumentation for runtime monitoring.

Our two-phase techniques includes a translation phase followed by an instrumentation phase. The

translation phase is compromised of translation and testing-based analysis. First, we statically identify

input and output variables in the application. Next, the Web application is translated to the input

language of a tester to determine the outputs that are likely to depend on the user inputs. Finally, in

the instrumentation phase, monitors are inserted in the Web applications to check whether any of the

outputs identified in the previous phase are indeed exploited by user inputs.

Our method is as efficient and effective as the available XSSD techniques. For testing we employ

a concolic testing tool (jCute [44]) instead of complex code implementation of other conconlic testing

based techniques [27, 37, 77, 18]. In addition to being both efficient and effective as the best available

techniques, our framework is also capable of identifying XSS vulnerability conditions that occur due

to the conditional copy (of inputs to outputs) and the concatenation of singularly benign input strings

that form malicious strings. We present a prototype of the framework and demonstrate its effectiveness

using a non-trivial JSP Web application.

The rest of this chapter is organized as follows. Section 4.1 briefly reviews the definition of XSS

and introduces our technique. Section 4.2 describes our technique; especially (a) the identification of

input and outputs for testing, (b) the translation of JSP to Java, and (c) concolic unit testing method.

Section 4.3 presents the results of the evaluation of our method. Finally, Section 4.4 concludes the

chapter.

www.manaraa.com

67

4.1 Introduction to Cross-Site Scripting

Cross-Site Scripting attacks occur when a script is injected into an application and executed

typically by the browser, granting a malicious user unauthorized access to system resources or sensitive

infromation. First Order XSS attacks are successful only when certain vulnerabilities exist in the

application; more precisely when such vulnerabilities remain unresolved. These vulnerabilities primarily

involve allowing executable inputs from users to be directly or indirectly assigned the outputs of Web

application without proper sanitization. As outputs of Web applications are executed by the browser,

inputs that influence the outputs can inject unwanted potentially malicious codes that are executed.

This classification of XSSAs aligns with the Code Injection Attack definition provided by Ray and

Ligatti [78].

Research on XSS aims to find vulnerabilities and/or prevent attacks. One challenge in attack

prevention is discerning which inputs will result in attacks. Some basic approaches have been deployed

to detect and stop attacks by checking for script tags and same origin verification via HTML “Referer”

header field1 [34]. However, these techniques may not be effective as sophisticated attacks can easily

circumvent tag-based detection, and HTML “Referer” field use is optional and possibly unavailable.

In the recent past, more complex detection techniques [70, 40, 33, 37, 13, 43, 22] have been proposed

and developed that are either based on static analysis or runtime monitoring.

Static analysis uses traditional program analysis techniques to identify vulnerable code segments

via taint analysis and instruments these segments to avoid their exploitation at runtime. Typically, they

are not suited to find exploitation of vulnerabilities resulting from conditional copy. Conditional copy

is a technique used in Code-interference based injection attacks, wherein a variable value is transferred

into another (e.g., character-by-character in a conditional code segment) with direct dependency of the

copies or other data operations.

Runtime monitoring, on the other hand, relies on a library of attack patterns or specification

of non-attack (allowable) patterns to detect potential attacks. As a result, runtime monitoring can

incur prohibitively large overhead if non-vulnerable variables are unnecessarily monitored against attack

patterns.

1The Referer HTML header field identifies the Web page address (URL) and is purposefully misspelled.

www.manaraa.com

68

Our two-phase method employs both static analysis and runtime monitoring. The static analysis

phase includes application translation and conolic unit testing technique. The runtime monitoring

phase uses the facts learned from static analysis to monitor the relevant variables in the application.

Any existing runtime monitoring method can be used in our runtime monitoring phase as long as it is

coupled with the information generated in our static analysis phase. Therefore, we emphasize the static

analysis phase.

We have developed a framework that implements our technique. Our framework takes as input

Web applications written in JavaServer Pages (JSP), a prevalent application language that can contain

HTML elements and embedded Java, in addition to language-specific objects and statements. Input in

JSP includes HTML form input

(<input type=[. . .] name="paramName">)

which are accessible as output via JSP request objects

(<%= request.getParameter("paramName") %>)

and via JSP text boxes (<%=paramName %>). Other output can be found within embedded Java print

statements (<% out.print(ln) %>). Our objective is to determine whether the inputs can become

assigned to some outputs, identify these outputs (static analysis) and then deploy runtime monitoring

to check the values of these outputs for attack patterns.

Our method is outlined as follows:

1. Automatic translation . We convert the JSP application to a Java program by considering

only the elements of JSP application that are relevant for determining XSS vulnerabilities. First,

the JSP input and output variables are identified. Then, the JSP page is translated to a Java

program, with additions of automatic input test case generation statements and assertions to be

used to check for equality between inputs and outputs, and possible assignment of simple attack

patterns (e.g., containing script tags: < . . . >) to outputs.

2. Testing-based analysis. We use the concolic testing tool jCUTE2 to generate inputs and to

test assertions. These assertions verify which inputs can contain script tag symbols and pass

unsanitized (or improperly sanitized) to an output in the Java program. This implies the JSP

page has a vulnerability based on the input/output pair and the affected outputs can be exploited

at runtime.

2CUTE : A Concolic Unit Testing Engine for C and Java Automatic Test. [44]

www.manaraa.com

69

3. Source code instrumentation . Finally, we instrument the original JSP application and include

calls to a Java class that monitors the values of affected outputs and whenever a potential XSS

attack pattern is recognized at the outputs, the pattern is replaced with a benign string to avoid

exploitation.

Contributions The contributions of our approach can be summarized as follows:

1. We propose a concolic testing based technique for detecting possible vulnerable outputs (those

which are directly and indirectly assigned to from the user inputs and can contain scripting tags)

followed by selective instrumentation for runtime XSS attack detection.

2. Being based on efficient concolic testing technique, our vulnerability detection method does not

require expensive program analysis techniques.

3. Our technique detects the vulnerabilities caused by conditional copy that are typically not detected

by existing techniques. Our solution can also detect attacks caused by concatenation of singularly

benign inputs resulting in malicious output.

4. We have developed a prototype implementation of our technique for JSP applications and evalu-

ated the effectiveness of our technique using real-life GotoCode applications.

4.2 A method for detecting Cross-Site Scripting vulnerabilities and

implementing attack prevention

This section describes our method that is depicted in Figure 4.1.

Figure 4.1 Approach overview

We use a an example to discuss the salient aspects of our technique, and to compare our technique

with respect to the existing ones. Figure 4.2 shows a JSP application that displays a welcome page that

www.manaraa.com

70

1. <%@ page import="java.util.*" %>

2. <%

3. String usrname = request.getParameter("username");

4. String uname = new String();

5. for (int i = 0; i < username.length(); i++){

6. if (username[i]==’a’) {uname[i]=’a’;}

7. else if (username[i]==’b’) {uname[i]=’b’;}

...

8. }

9. session.setAttribute("uName",uname);

10. %>

11. <HTML>

12. <BODY>

13.

14. <HR>

15. <div id ="WelcomeMessage"> WELCOME </div>

16. <div id="Welcome<%=session.getAttribute("uName")%>">

17. Welcome, <%=session.getAttribute("uName")%>

18. </div>

19. </BODY>

20. </HTML>

Figure 4.2 Illustrative example JSP code: welcomePage.jsp

is displayed after a user login. We note the inputs and assignments contained in the application. In

Line 3, the code assigns usrname user input from the HTTP request parameter username. It then copies

usrname to uname character-by-character (Lines 5–8). Finally, the value of uname is set to a session

attribute, uName, which is retrieved at Line 16. Thus, in this application, the input variable is usrname

and the output is uname. The application can be exploited by assigning malicious input usrname,

which gets directly assigned to uname via the conditional copy code segment. This is an example of

conditional copy vulnerability. This illustrative example is the conditional copy in its simplest form. Web

applications will not typically include a character-to-character copy; however, conditional copies may

arise in more sophisticated versions. For example, a translation of an input string to some intermediate

string may perform a conditional copy. Attackers can exploit such translations. Also, insufficient or

inadequate sanitization methods give a false perception of security; they are also examples of conditional

copy.

Our technique can efficiently detect such vulnerabilities.

www.manaraa.com

71

We now describe our technique in detail.

4.2.1 Preprocessing

We statically process the JSP Web application one file at a time to identify the inputs and outputs

of each page generated from the files. We define a grammar based on the application language to capture

all variables, request and response parameters, session variables, tags, et cetera. We have enumerated

constructs of the Web application langague JSP and their mapping to Java for our translation, in

Figure 4.3.

JSP implicit object = char[] object name

JSP implicit variable = char[] variable name

<%= expression %> = Java expression

<% scriptlet %> = Java only

<%! declarations %> = Java declarations

<%= expression %> = evaluate expression in Java context

<%= input %> = Java input variable and/or variable assignment

session.getAttribute("paramName"); = char[] paramNameInput = new char[SIZE];

session.setAttribute("paramName",name); = char[] paramName = name;

session.getParameter("paramName"); = char[] paramNameInput = new char[SIZE];

response.sendRedirect(string); = char [] output = string;

request.setParameter("paramName",name); = char[] paramName = name;

request.getParameter("paramName"); = char[] paramNameInput = new char[SIZE];

request.getQueryString(); = char[] querystringInput = new char[SIZE];

request.getQueryURI(); = char[] queryuriInput = new char[SIZE];

<%= output %> = Java output variable and System.out.println();

<%-- input %> = Java input variable and/or variable assignment

<%-- output %> = Java output variable and System.out.println();

<%! comment %> = Java comment // or /* ... */

<!-- HTML comment > = Java comment // or /* ... */

<%@ include > = map include file as dependent file for inclusion

<HTML identifier> = System.out.println("HTML identifier>");

Figure 4.3 Mapping for JSP to Java translation

Any information that the application expects from other pages within the application (e.g., session

variables that are passed between pages in a session) is also identified as input since we treat the JSP file

as an atomic unit. This aligns with Wu and Offutt [79]; the authors consider “HTML file or section of a

server program that prints HTML” as an atomic section in modeling and testing Web-based applications.

www.manaraa.com

72

In our example in Figure 4.2, the input from the user is the value associated to username at Line 3

(3. String usrname = request.getParameter("username");), which is assigned to the application

input usrname. The output in our example is uName, used inside tags at Lines 16 and 17 shown below.

16. <div id="Welcome<%=session.getAttribute("uName")%>">

17. Welcome, <%=session.getAttribute("uName")%>

4.2.2 Translation

Once the input and output variables in an application file are detected during preprocess-

ing, the translation of application to Java is performed. Note that, the result of translation, the

Java program, maintains the following aspects of the original JSP application: the relationships

between program variables, inputs and outputs, and control flow of the application. All other

elements of JSP application, that relates to generating HTML page are discarded, they are

either commented or placed in print statements in the result of translation. Additionally, our

method requires a Java String to be represented as a character array, as concolic testing will

not work with String. Figure 4.4 shows the String to character array mapping for variables

and Java String methods.

We show the full translation of our example application from Figure 4.2 as the resulting

Java code in Figure 4.5. The input, output and the JSP application variables are also present

in the Java program. Additionally, the string variables are converted to character arrays as

concolic testing cannot handle strings; however, this does not result in any over-approximation

or under-approximation in the context of vulnerability detection. Lines 21–31 encode a con-

structor which mimics external input (in this case username parameter in JSP application).

Lines 22–26 represent the translation of Line 3 of JSP application in Figure 4.2. Lines 36–40 is

the translation of the conditional copy of the JSP application and Line 41 corresponds to as-

signment of uname to session variable uName in the JSP application. Identified output variables

are also instrumented during translation. Lines 16–17 of Figure 4.2 correspond to Lines 46–50.

The output is printed in Lines 46–47 and tested in Lines 48-50. Thus we have a test file with

test case generation and testing code for the next step, testing.

www.manaraa.com

73

str = { varStr | "[^null]" | " " | "null" | obj.toString() }

obj = { Object | char[] | strBuffer | boolean | char | double | float | int | long }

char[] = { char_char[] | char }

str.charAt(int)==> { (charArrVar.toString()).charAt(int) | " ".charAt() }

str.compareTo(obj)==> { compareCharArr(char[], *.toCharArray())}

str.compareTo(str)==> { str.compareTo(str) }

str.compareToIgnoreCase(str)==> { compareCharArrIgnoreCase(char[],char[]) }

str.concat(str)==> { char[] = concatCharArrs(char[],char[]).toCharArray(); }

str.contentEquals(strBuffer)==> { ContentEquals (char[], strBuffer.toString().toCharArray()) }

str.copyValueOf(char[])==> { char[] = CopyValueOf(char[]) }

str.copyValueOf(char[], int, int)==> { char[] = CopyValueOf(char[],int1,int2) }

str.endsWith(str)==> { endsWithCharArr(char[], char[]) }

str.equals(obj)==> { Arrays.equals(char[], char[]) }

str.equalsIgnoreCase(str)==> { equalsIgnoreCaseCharArrs(char[], char[]) }

str.getBytes(_)==> { getBytesCharArr(char[]) }

str.getBytes(int, int, byte[], int)==> { getBytesCharArr(int, int, byte[], int, char[]) }

str.getBytes(str)==> { getBytesCharArr(char[]) }

str.getChars(int, int, char[], int)==> { getCharsCharArrs(int,int,char1[],int, char2[]) }

str.hashCode(_)==> { (char[].toString()).hashCode(_) }

str.indexOf(int)==> { (char[].toString()).indexOf(int) }

str.indexOf(int, int)==> { (char[].toString()).indexOf(int, int) }

str.indexOf(str)==> { (char[].toString()).indexOf(char[].toString()) }

str.indexOf(str, int)==> { (char[].toString()).indexOf(char[].toString(), int}) }

str.intern(_)==> { (char[].toString()).intern(_) }

str.lastIndexOf(int)==> { (char[].toString()).lastIndexOf(int) }

str.lastIndexOf(int, int)==> { (char[].toString()).lastIndexOf(int, int) }

str.lastIndexOf(str)==> { (char[].toString()).lastIndexOf(char[].toString()) }

str.lastIndexOf(str, int)==> { (char[].toString()).lastIndexOf(char[].toString(), int) }

str.length(_)==> { CHAR_LENTGH | (char[].toString()).length() }

str.matches(str)==> { (char[].toString()).matches(str) |

(char[].toString()).matches(char[].toString()) }

str.replace(char, char | CharSequence target)==> { Replace(char, char, char[]) }

str.replace(CharSequence target, CharSequence replacement)==>

{ Replace(CharSequence, CharSequence, char[]); }

str.startsWith(str)==> { startsWithCharArr(char[], char[]) }

str.startsWith(str, int)==> { startsWithCharArr(char[], char[], int) }

str.subSequence(int, int)==> { subSequenceCharArr(int1, int2, char[]) }

str.substring(int | int, int)==> { substringCharArr(int, char[]) }

str.substring(int, int)==> { substringCharArr(int1, int2, char[]) }

str.toCharArray(_)==> { char[] | str.toCharArray() }

str.toLowerCase(_)==> { toLowerCaseCharArr(char[]) }

str.toString(_)==> { char[].toString() | str.toString() }

str.toUpperCase(_)==> { toUpperCaseCharArr(char[]) }

str.trim(_)==> { (charArrVar.toString()).trim() }

str.valueOf(boolean)==> { (char[] = (String.valueOf(boolean)).toCharArray() }

str.valueOf(char)==> { (char[] = (String.valueOf(char)).toCharArray() }

str.valueOf(char[])==> { char[] = (String.valueOf(char[])).toCharArray() | char[] }

str.valueOf(char[], int, int)==> { char[] = (String.valueOf(char[],int,int)).toCharArray() }

str.valueOf(double)==> { (char[] = (String.valueOf(double)).toCharArray() }

str.valueOf(float)==> { (char[] = (String.valueOf(float)).toCharArray() }

str.valueOf(int)==> { char[] = (String.valueOf(int)).toCharArray()

str.valueOf(long)==> { char[] = (String.valueOf(long)).toCharArray() }

str.valueOf(Object)==> { char[] = (String.valueOf(Object)).toCharArray() }

Figure 4.4 Grammar for adapting Java String to char arrays

www.manaraa.com

74

welcomePage.java:

1. // begin headers

2. import java.io.*;

3. . . .

4. import cute.Cute;

5. //compiler directives from translated file

6. // end headers

7. // begin mainClass

8. public class welcomePage {

9. // begin members

10. public static javax.servlet.http.HttpServletRequest request;

11. public static javax.servlet.http.HttpServletResponse response;

12. public static javax.servlet.http.HttpSession session;

13. public static javax.servlet.jsp.JspWriter out;

14. public static int STR_SIZE= 5;

15. public static char[] usrname ;

16. public static char[] uname ;

17. public static char[] username ;

18. public static char[] uName;

19. // end members

20. // begin constructor

21. public welcomePage() {

22. username = new char[STR_SIZE];

23. for (int k=0; k < STR_SIZE; k++) {

24. username[k] = cute.Cute.input.Character();

25. if (username[k] == ’\0’) username[k] = ’ ’;

26. }

27. usrname = new char[STR_SIZE];

28. for (int i=0; i< STR_SIZE; i++){ usrname[i]=username[i]; }

29. uname= new char[STR_SIZE];

30. uName = new char[STR_SIZE];

31. }

32. ...

33. public static void main(String[] args) {

34. // call default constructor

35. welcomePage mywelcomePage = new welcomePage();

36. for (int i=0; i < STR_SIZE; i++) {

37. if (usrname[i] == ’a’) { uname[i]= ’a’; }

38. else if (usrname[i] == ’b’) { uname[i]= ’b’; }

39. ...

40. }

41. for (int i=0; i< STR_SIZE; i++){ uName[i]=uname[i]; }

42. System.out.println(" <HTML>\n");

43. System.out.println(" <BODY>\n");

44. System.out.println("
\n");

45. System.out.println(" <div id =WelcomeMessage> WELCOME </div>\n");

46. System.out.println("<div id=\"Welcome"+uName.toString()+"\">");

47. System.out.println("Welcome, "+uName.toString()+"");

48. if (uName[0] ==‘<’) {

49. System.out.print("check uName: ");

50. Cute.Assert(uName[3] !=‘>’); }

51. System.out.println(" </div>\n");

52. System.out.println(" </BODY>\n");

53. System.out.println(" </HTML>\n");

54. }// end main

55. }//end of Mainclass

Figure 4.5 Illustrative example code converted to Java: welcomePage.java

www.manaraa.com

75

4.2.3 Testing for determining vulnerable outputs

For testing, we use the concolic testing tool jCute [44] to automatically generate input test

cases that determine vulnerable outputs. These outputs are directly or indirectly assigned from

inputs and can contain scripting tags. Recall the description of concolic testing from Chap-

ter 3 as follows. Concolic testing utilizes a combination of concrete and symbolic execution to

generate test cases and to effectively guide exploration of the new program paths, respectively.

In concolic testing, a random test case is generated and the test program is executed with

that concrete value. When the program encounters a conditional statement (e.g., instrumented

assertions) these become the symbolic constraints. The concrete and symbol constraints are

solved simultaneously to create a new test value and to continue creating new branches to test,

until no new branches can be created. As long as the branches are finite in number and finite in

length, i.e., not recursively infinite, we are assured extensive branch coverage with this testing

technique. There will be inserted assertions when there are output variables and there may be

conditionals from the code that serve as symbolic constraints. Our method relies on careful

placement of assertion statements and identifies test cases that can violate the assertions.

We check whether the output of the Java program can evaluate to a sequence of characters

representing a script. In other words, we need to check whether the sequence contains a “<”

proceeded by a “>”. The finite state automaton (FSA) in Figure 4.6 represents such a sequence;

zero or more characters followed by “<”, followed by a finite sequence of characters, followed

by “>”, and finally, followed by zero or more characters.

Figure 4.6 Finite state automaton representing vulnerable output

www.manaraa.com

76

The concolic testing tool jCute can reason about characters and relationships between

characters (equality, inequality, ordering); that is, it cannot check for the inclusion of a sequence

of characters in a regular language (expressed as the FSA in Figure 4.6). However, one can

check the presence of “<” at the beginning and “>” at the end of a character sequence where

the sequence is at least three characters long. Such checking is sufficient to detect whether

some variable in Java application being tested by the jCute engine can be assigned to a string

that is accepted by the FSA in Figure 4.6.

Proof. The proof relies on two facts

1. The valuation of output variables in the Java program comes from an input variable

or from concatenation of two or more input variables (we discard the role of program

variables that are statically assigned in the program and replace them with empty strings).

2. The smallest string accepted by the FSA in Figure 4.6 is of length three, and starts and

ends with “<” and “>”, respectively.

Therefore, if jCute fails to identify any test case which leads to an output variable assigned

to a sequence of three characters accepted by the FSA in Figure 4.6, then it will also fail to

identify any test case which will result in the same output variable to be assigned a sequence

of four or more characters accepted by the FSA in Figure 4.6. Conversely, if an output can be

assigned to a sequence of four or more characters accepted by FSA in Figure 4.6, then jCute

can identify a test case that will lead to the same output variable assigned to a sequence of

three characters accepted by the FSA.

In our translated test program in Figure 4.5, Lines 48–50 include the assertion which

is violated only when the output variable uName (which was converted from a JSP session

attribute) in the JSP application (Figure 4.2) holds a sequence of characters of length three,

and starts and ends with “<” and “>”, respectively. This violation indicates a vulnerability

that can lead to XSS, i.e. an input containing script symbols can be assigned to the output

variable, directly or indirectly. After testing, with these vulnerable output variables identified,

www.manaraa.com

77

we are now ready to selectively instrument our original JSP Web application with runtime

monitors.

4.2.4 Instrumentation for detecting Cross-Site Scripting attacks

Applying the jCute testing engine, we automatically obtain test cases for which some

output variable can be assigned to a three-character sequence starting and ending with “<”

and “>”, respectively. These are the outputs that can be exploited by injection attacks, and

therefore, their valuation must be monitored at runtime. We refer to these outputs as vulnerable

outputs. Note that, there can be many outputs in the application and a small number of them

may be vulnerable. By utilizing jCute to find these vulnerable outputs, we minimize the number

of outputs that need to be monitored in the Web application.

We instrument the original JSP application by inserting calls to a monitor module, which

checks the valuation of the vulnerable outputs at program points right before they are being

used in the application. Any attack detection engine could be deployed as a monitor; we

have created a simple monitor. Our monitor checks for scripting elements involving HTTP,

<script>, javascript:, document.cookie, document.location, <img src, and <iframe.

If an output matches a scripting pattern, a benign error-message string replaces the malicious

output, thereby neutralizing the attack.

In our example, uName is the vulnerable output. We add a call to the monitor method

before Line 9 of Figure 4.2.

4.3 Case Studies

We use open-source JSP applications from GotoCode3 to evaluate the feasibility and

effectiveness of our technique. JSP applications consist of multiple JSP files. We manually

identify the dependencies between the JSP files; dependency can be easily determined based

on the exchange of information between JSP files (via session variables, request parameter

3http://www.gotocode.com

www.manaraa.com

78

Table 4.1 GotoCode Projects Tested

Project Name Number of Files Number of Files

Tested w/ Vulnerable

Outputs

Online BookStore 24 9

Bug Tracking System 12 1

Employee Directory 6 5

Events 9 3

Forum 4 1

Ledger 2 0

Online Portal 23 8

Yellow Pages 8 5

forwarding, etc.). Each file is then analyzed by our technique individually and vulnerable

outputs are determined.

We have selected eight projects from GotoCode to evaluate our technique. Table 4.1

presents the project names and the number of files that are analyzed in each project. The table

also shows the number of files for each project in which vulnerable outputs are detected.

Table 4.2 presents a detailed result for one of the projects. The second column presents

the known vulnerable variables as noted in [57]. The third column presents the vulnerable

variables that are identified by our technique. Note that, our technique identifies variables

as vulnerable that are previously undetected (as per [57]). Two types of timing results (in

seconds) are reported. C-Time corresponds to the time for translating JSP application page to

instrumented Java program with jCute test variables, and compiling the Java program using

jCute test engine. E-Time corresponds to the execution of compiled Java program in jCute and

identifying all the vulnerable output variable (i.e. identifying the test case/input that leads to

failure of assertion).

Lines of code are included in the final column for jsp and converted java file, respectively.

They demonstrate that the translation includes the string to character array conversion methods

that needed since concolic testing cannot handle strings, but can handle characters. The number

www.manaraa.com

79

Table 4.2 Online Bookstore Variables

Filename (.jsp) Vulnerable

Variable(s)

Identified

Variable(s)

In Out C-Time E-Time LOC

BookDetail itemid itemid 17 10 13.84 84.47 806/1647

CategoriesRecord category id category id 5 7 7.79 23.38 295/1024

Login ret page,

querystring

ret page,

querystring

6 8 6.41 8.45 174/917

OrdersRecord order id order id,

member id,

item id

9 6 9.37 159.01 360/1122

ShoppingCart-

Record

order id order id 6 13 8.63 10.33 322/1061

of input and output variables add to the translated line count, as the translated Java file must

contain test generation and assertion code, respestively.

Timing is also included in Table 4.2. We show the average of five runs on each file. E-Time

shows the time to find all identified variables in a file. We note that E-Time for Login and

OrdersRecord is for multiple variables, thus we consider the average. Conditional statements

represent constraints to solve in concolic testing, and thus the number of conditionals influence

E-Time. In order from most to fewest conditionals is BookDetail, OrdersRecord, Categories

Record, ShoppingCartRecord, and Login which is also the same E-Time ordering to find one

vulnerable variable.

4.4 Conclusions

We have presented a method for identifying XSS vulnerability and detecting their ex-

ploitation. At its core, our technique relies on smart translation of Web applications and

deploying a unit testing engine to determine vulnerabilities, and finally applying code instru-

mentation to monitor attacks that exploit those vulnerabilities. We have shown that our

technique is efficient and can easily identify conditional copy vulnerabilities.

www.manaraa.com

80

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Summary and contributions

First, we have provided a comprehensive classification and review of a representative

body of FOID methods that provides a road map of existing research and a foundation for

future works. Next, we have proposed techniques for the detection of First Order SQLI and

XSS and implemented a language-specific framework to evaluate these techniques. Our SQLI

method is at the query level and our XSS method is at the application level, respectively. Our

algorithms employ concolic testing with test case generation to find vulnerabilities.

Our query-based SQLID technique introduced a new approach that analyzed the seman-

tics dependencies between conditions of a query, thus the technique did not rely solely on the

query’s syntactic structure. We employed a concolic testing tool to generate query condition

values and test which combinations of condition values could lead to an attack, creating various

attack cases. We also provided a novel technique to reduce the various cases and summarize

them automatically into a causal set. Our work specifically addresses vulnerabilities in a query

that can lead to tautology-based attacks. Since our technique is based on semantic depen-

dencies, it does not produce false negative or false positive results. Also, with its reliance on

semantic dependencies between the conditions that can be affected by user input, is both more

general and more precise than the existing techniques.

The future plan is to develop a complete framework and empirically evaluate the strengths

of our technique using real-life SQL queries. This will also include the investigation of various

decision diagram construction and minimization heuristics, and identification of the ones that

best suit our purpose. Especially, it will be interesting to take into consideration Multi-valued

www.manaraa.com

81

Decision Diagram Library [80] that allows for representation of logical formulas over variables

with any size (finite) domain and has several optimized reduction algorithms.

In the case of XSS, we have implemented a concolic testing based technique for detecting

possible vulnerable outputs. These outputs guide selective instrumentation in the Web applica-

tion code for runtime XSS attack detection. Since we use efficient concolic testing, our technique

does not require expensive program analysis techniques. Our method detects the conditional

copy vulnerability (character-by-character copy in a conditional code segment). Furthermore,

our method detects attacks caused by concatenation of singularly benign inputs that result in

malicious output. The prototype implementation of our technique translates JSP applications

to the test language (Java). We have evaluated its effectiveness on real-life applications.

Since our XSS method was implemented for the Web application programming language

JSP, additional translators for other domain-specific languages (DSLs) are natural extensions

to the framework. Some Web-based DSLs include the following: PHP, Perl, Python, Ruby,

Java, JavaScript, AJAX, and ASP.NET(C#, VB.NET). The future plan is to extend this

technique to detect and prevent different types of injection attacks (e.g., Second Order SQLI)

in Web applications written in other languages. The overall objective is to develop a generic

framework that allows grammar-based automatic translation of Web applications written in any

language into intermediate test-language, and automatic instrumentation of Web applications

based on the results of testing the test-language. Another possible avenue for future work is

the implementation of our algorithm with a new test language and new concolic testing tool or

technique.

Our framework could be deployed on a Web server to test and refactor deployed or

deployment-ready Web application code. A possible pre-deployment application could be an

integrated development environment (IDE) plug-in for vulnerability testing. The framework

in its current configuration could be extended to also detect Second Order SQLI and XSS. We

describe this Second Order Injection vulnerability detection extension in the following section.

www.manaraa.com

82

5.2 Extension to Second Order Injection Attacks

The framework detailed in this thesis detects First Order Injection vulnerabilities, specif-

ically SQLI using a query level technique and XSS using an application level technique. Both

attacks have Second Order versions which have been researched less frequently than their First

Order counterparts due to their complexity. Existing works are lacking extensive definitions

and descriptions of Second Order Injection Attacks; however, white papers [81, 82, 83] explain

the a priori storage of malicious data, the subsequent retrieval of that data and the ensuing

attack on unsuspecting victims with some illustrative examples. These papers serve as the pri-

mary source for papers directly addressing Second Order attacks specifically [13] and all SQLI

[4]. We note that while this description is one possible scenario of a Second Order attack, other

scenarios exist. Our aim is to provide an encompassing Second Order Injection attack definition

along with detailed scenario explanations and propose a concolic testing-based technique for

the detection of Second Order Injection Attack vulnerabilities.

We define a Second-Order Injection Attack as an injection of malicious data that is first

stored, then retrieved, and finally propagated to compromise user and/or system resources.

We first address Seond Order SQL Injection Attacks (SQLIA2), wherein the event propagated

and responsible for the security breach is a query injected with the malicious data. We further

classify SQLIA2 that use the database for persistent storage in the following scenarios:

1. Direct Single Injection Attack (DSIA): In this type of attack, an attacker uses a single

query to inject into the database malicious data that is used in a subsequent query called

by the web application that is not deployed by the attacker to launch a successful attack.

See Figure 5.1 (a).

2. Direct Multiple Injection Attack (DMIA): In this type of attack, an attacker uses one

query to inject into the database malicious data that is used in a subsequent query called

by the attacker to launch a successful attack. See Figure 5.1 (b).

3. Indirect Injection Attack (IIA): In this type of attack, an attacker uses a single query to

inject into the database malicious data that is used in a subsequent query called by an

www.manaraa.com

83

innocent victim to launch a successful attack. See Figure 5.1 (c).

(a) Direct Single Injection (b) Direct Multiple Injection (c) Indirect Injection Attacks

Figure 5.1 (a) Direct Single Injection Attack; (b) Direct Multiple Injection Attacks; (c) Indi-

rect Injection Attacks

Typically two vulnerabilities are exploited in a second order attack, one during storage

of the malicious data and one during the propagation of the attack. A few works that address

First Order SQLIA described in Section 2.1 can also address SQLIA2 or some scenarios of

SQLIA2 [8, 13, 4, 15]

For correctly detecting SQLIA2, a method would need to track the malicious data into

the database and also track it from the database into the application at runtime. This is

difficult when SQLIA2 spans more than one session, requiring expensive tracking and possibly

demarcation or extraneous storage of the malicious data. Methods which detect First Order

SQLIA attacks may still find SQLIA2 propagated attacks [8, 15]. As long as the attack itself is

detected and thwarted, its classification as First or Second Order is inconsequential; however,

First Order vulnerability detection may not discover Second Order vulnerabilities.

For Second Order SQLIV detection, expensive and extensive analysis similar to that used

in Second Order SQLIA detection is required. However, we propose a method that detects the

www.manaraa.com

84

two vulnerabilities when exploited together can lead to a propagated SQLIA2. Based on the

First Order XSSV detection method in Chapter 4, this method will provide a static analysis of

a Web application to detect vulnerable spots which will inform the instrumentation of runtime

attack monitoring. Thus, this approach will statically detect Second Order SQLIV (SQLIV2).

Our proposed method is outlined as follows:

1. Preprocessing : The application is statically analyzed to identify two types of input

variables, one into the application (input) and one into the database (input to db),

and two types of output variables, one from the database for use in the application

(output from db) and one from the application for rendering in the browser (output).

2. Translation : The application is translated from its original language to the testing lan-

guage, with previous identified input variables coded for automatic test case generation,

and input to db, output from db and output variables coded for testing for equality

to other variables.

3. Testing : The translated test file is executed to determine the following equalities: input

= input to db, input to db = output from db, and output from db = output.

These equalities imply that sanitization methods were inadequate or were not imple-

mented in the application, allowing potentially malicious data to pass unaltered from one

input or output variable to the next. These variable pair equalities indicate vulnerability

for storage of an attack (input = input to db) and some attack scenarios (combinations

of variable pair equalities).

4. Instrumentation : Finally, the original Web application will be instrumented to allow

for runtime monitoring of vulnerable variables.

Figure 5.2 illustrates the first three steps of the proposed method. In the top box, as

described in the preprocessing step, input and output variables are identified: input, input

to db, output from db and output. Next is translation from the Web application language

to the testing language as depicted in the second box. Following translation is testing. In

www.manaraa.com

85

Figure 5.2 Second Order SQL Injection Vulnerability Detection

the third box, arrows indicate equality tests that occur between the variables. The final box

lists expression based on the tests that, when satisfied, indicate SQLIV2. The equalities are

labeled as follows: a : (input = input to db), b : (input to db = output from db), and

c : (output from db = output). Storage occurs when data passes unaltered from an input

variable to a input to db variable, represented by the expression (a & !b & !c). When a DSIA

vulnerability is found, all the variables are equal (a & b & c), indicating data passing from

input, being stored in the database, being retrieved from the database, and finally to output.

A vulnerability to previous stored malicious data occurs when output of the database can reach

the browser (!a & !b & c).

www.manaraa.com

86

Using the basic components of SQLIA2 (1. Storage, 2. Retrieval and 3. Propagation),

we have classified three basic types of Second-Order SQL Injection Attacks: Direct Single

Injection, Direct Multiple Injection and Indirect Injection Attacks and proposed a method for

Second Order SQLI vulnerability detection.

www.manaraa.com

87

BIBLIOGRAPHY

[1] “OWASP 2010 top ten,” 2010. [Online]. Available: http://www.owasp.org

[2] C. Gould, Z. Su, and P. Devanbu, “Static checking of dynamically generated queries in

database applications,” in Proceedings of the 26th International Conference on Software

Engineering, ser. ICSE ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.

645–654. [Online]. Available: http://dl.acm.org/citation.cfm?id=998675.999468

[3] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A static analysis framework for

detecting sql injection vulnerabilities,” in Computer Software and Applications Conference,

2007. COMPSAC 2007. 31st Annual International, vol. 1, july 2007, pp. 87 –96.

[4] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “Candid:

preventing sql injection attacks using dynamic candidate evaluations,” in Proceedings

of the 14th ACM conference on Computer and communications security, ser.

CCS ’07. New York, NY, USA: ACM, 2007, pp. 12–24. [Online]. Available:

http://doi.acm.org/10.1145/1315245.1315249

[5] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web application security

assessment by fault injection and behavior monitoring,” in Proceedings of the 12th

international conference on World Wide Web, ser. WWW ’03. New York, NY, USA:

ACM, 2003, pp. 148–159. [Online]. Available: http://doi.acm.org/10.1145/775152.775174

[6] W. Halfond, A. Orso, and P. Manolios, “Wasp: Protecting web applications using posi-

tive tainting and syntax-aware evaluation,” Software Engineering, IEEE Transactions on,

vol. 34, no. 1, pp. 65 –81, jan.-feb. 2008.

http://www.owasp.org
http://dl.acm.org/citation.cfm?id=998675.999468
http://doi.acm.org/10.1145/1315245.1315249
http://doi.acm.org/10.1145/775152.775174

www.manaraa.com

88

[7] W. G. J. Halfond, A. Orso, and P. Manolios, “Using positive tainting and syntax-aware

evaluation to counter sql injection attacks,” in Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering, ser. SIGSOFT

’06/FSE-14. New York, NY, USA: ACM, 2006, pp. 175–185. [Online]. Available:

http://doi.acm.org/10.1145/1181775.1181797

[8] W. G. J. Halfond and A. Orso, “Amnesia: analysis and monitoring for neutralizing

sql-injection attacks,” in Proceedings of the 20th IEEE/ACM international Conference on

Automated software engineering, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp.

174–183. [Online]. Available: http://doi.acm.org/10.1145/1101908.1101935

[9] M. Bravenboer, E. Dolstra, and E. Visser, “Preventing injection attacks with

syntax embeddings,” in Proceedings of the 6th international conference on Generative

programming and component engineering, ser. GPCE ’07. New York, NY, USA: ACM,

2007, pp. 3–12. [Online]. Available: http://doi.acm.org/10.1145/1289971.1289975

[10] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing web applications

with static and dynamic information flow tracking,” in Proceedings of the 2008 ACM

SIGPLAN symposium on Partial evaluation and semantics-based program manipulation,

ser. PEPM ’08. New York, NY, USA: ACM, 2008, pp. 3–12. [Online]. Available:

http://doi.acm.org/10.1145/1328408.1328410

[11] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and security flaws

using pql: a program query language,” in Proceedings of the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applications, ser.

OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 365–383. [Online]. Available:

http://doi.acm.org/10.1145/1094811.1094840

[12] M. Johns and C. Beyerlein, “Smask: preventing injection attacks in web applications

by approximating automatic data/code separation,” in Proceedings of the 2007 ACM

symposium on Applied computing, ser. SAC ’07. New York, NY, USA: ACM, 2007, pp.

284–291. [Online]. Available: http://doi.acm.org/10.1145/1244002.1244071

http://doi.acm.org/10.1145/1181775.1181797
http://doi.acm.org/10.1145/1101908.1101935
http://doi.acm.org/10.1145/1289971.1289975
http://doi.acm.org/10.1145/1328408.1328410
http://doi.acm.org/10.1145/1094811.1094840
http://doi.acm.org/10.1145/1244002.1244071

www.manaraa.com

89

[13] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic creation of SQL

injection and cross-site scripting attacks,” in ICSE. IEEE, 2009, pp. 199–209.

[14] Y. Kosuga, K. Kernel, M. Hanaoka, M. Hishiyama, and Y. Takahama, “Sania: Syntactic

and semantic analysis for automated testing against sql injection,” in Computer Security

Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, dec. 2007, pp. 107

–117.

[15] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree validation to prevent

sql injection attacks,” in Proceedings of the 5th international workshop on Software

engineering and middleware, ser. SEM ’05. New York, NY, USA: ACM, 2005, pp.

106–113. [Online]. Available: http://doi.acm.org/10.1145/1108473.1108496

[16] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing web

application code by static analysis and runtime protection,” in Proceedings of the 13th

international conference on World Wide Web, ser. WWW ’04. New York, NY, USA:

ACM, 2004, pp. 40–52. [Online]. Available: http://doi.acm.org/10.1145/988672.988679

[17] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin, and

C. Unkel, “Context-sensitive program analysis as database queries,” in Proceedings of the

twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, ser. PODS ’05. New York, NY, USA: ACM, 2005, pp. 1–12. [Online]. Available:

http://doi.acm.org/10.1145/1065167.1065169

[18] F. Yu, M. Alkhalaf, and T. Bultan, “Patching vulnerabilities with sanitization synthesis,”

in ICSE, R. N. Taylor, H. Gall, and N. Medvidovic, Eds. ACM, 2011, pp. 251–260.

[19] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement generation to

remove sql injection vulnerabilities,” Inf. Softw. Technol., vol. 51, no. 3, pp. 589–598,

Mar. 2009. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.2008.08.002

[20] M. Johns, C. Beyerlein, R. Giesecke, and J. Posegga, “Secure code generation for web

applications,” Engineering Secure Software and Systems, pp. 96–113, 2010.

http://doi.acm.org/10.1145/1108473.1108496
http://doi.acm.org/10.1145/988672.988679
http://doi.acm.org/10.1145/1065167.1065169
http://dx.doi.org/10.1016/j.infsof.2008.08.002

www.manaraa.com

90

[21] S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql injection attacks,” in ACNS,

ser. Lecture Notes in Computer Science, M. Jakobsson, M. Yung, and J. Zhou, Eds., vol.

3089. Springer, 2004, pp. 292–302.

[22] M. Martin and M. S. Lam, “Automatic generation of xss and sql injection attacks

with goal-directed model checking,” in Proceedings of the 17th conference on Security

symposium, ser. SS’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 31–43.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1496711.1496714

[23] F. Yu, M. Alkhalaf, and T. Bultan, “Generating vulnerability signatures for string ma-

nipulating programs using automata-based forward and backward symbolic analyses,” in

Automated Software Engineering, 2009. ASE ’09. 24th IEEE/ACM International Confer-

ence on, nov. 2009, pp. 605 –609.

[24] Y. Shin, L. Williams, and T. Xie, “Sqlunitgen: Test case generation for sql injection

detection,” North Carolina State University, Raleigh Technical report, NCSU CSC TR,

vol. 21, p. 2006, 2006.

[25] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst,

“Finding bugs in web applications using dynamic test generation and explicit-state model

checking,” IEEE Trans. Softw. Eng., vol. 36, no. 4, pp. 474–494, Jul. 2010. [Online].

Available: http://dx.doi.org/10.1109/TSE.2010.31

[26] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and S.-Y. Kuo,

“Verifying web applications using bounded model checking,” in Proceedings of the

2004 International Conference on Dependable Systems and Networks, ser. DSN ’04.

Washington, DC, USA: IEEE Computer Society, 2004, pp. 199–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1009382.1009735

[27] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su, “Dynamic test

input generation for web applications,” in ISSTA, 2008, pp. 249–260.

[28] M. Ruse, T. Sarkar, and S. Basu, “Analysis & detection of sql injection vulnerabilities

via automatic test case generation of programs,” in Proceedings of the 2010 10th

http://dl.acm.org/citation.cfm?id=1496711.1496714
http://dx.doi.org/10.1109/TSE.2010.31
http://dl.acm.org/citation.cfm?id=1009382.1009735

www.manaraa.com

91

IEEE/IPSJ International Symposium on Applications and the Internet, ser. SAINT ’10.

Washington, DC, USA: IEEE Computer Society, 2010, pp. 31–37. [Online]. Available:

http://dx.doi.org/10.1109/SAINT.2010.60

[29] K. Kemalis and T. Tzouramanis, “Sql-ids: a specification-based approach for sql-injection

detection,” in Proceedings of the 2008 ACM symposium on Applied computing, ser.

SAC ’08. New York, NY, USA: ACM, 2008, pp. 2153–2158. [Online]. Available:

http://doi.acm.org/10.1145/1363686.1364201

[30] K. Sen, “Concolic testing,” in Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, ser. ASE ’07. New York, NY, USA: ACM,

2007, pp. 571–572. [Online]. Available: http://doi.acm.org/10.1145/1321631.1321746

[31] “Facebook vulnerable to xss. over 70 million users are at risk,” http://www.xssed.com/

news/69/Facebook vulnerable to XSS. Over 70 million users are at risk.

[32] “Facebook blames porn attack on browser.” [Online]. Available: http://www.

informationweek.com/news/security/attacks/231903115

[33] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi, “A proposal and implementation

of automatic detection/collection system for cross-site scripting vulnerability,” in AINA

(1). IEEE Computer Society, 2004, pp. 145–151.

[34] E. Kirda, C. Krügel, G. Vigna, and N. Jovanovic, “Noxes: a client-side solution for miti-

gating cross-site scripting attacks,” in SAC, H. Haddad, Ed. ACM, 2006, pp. 330–337.

[35] J. Garcia-Alfaro and G. Navarro-Arribas, “Prevention of cross-site scripting attacks on

current web applications,” in Proceedings of the 2007 OTM confederated international

conference on On the move to meaningful internet systems: CoopIS, DOA, ODBASE,

GADA, and IS - Volume Part II, ser. OTM’07. Berlin, Heidelberg: Springer-Verlag, 2007,

pp. 1770–1784. [Online]. Available: http://dl.acm.org/citation.cfm?id=1784707.1784768

http://dx.doi.org/10.1109/SAINT.2010.60
http://doi.acm.org/10.1145/1363686.1364201
http://doi.acm.org/10.1145/1321631.1321746
http://www.xssed.com/news/69/Facebook_vulnerable_to_XSS._Over_70_million_users_are_at_risk.
http://www.xssed.com/news/69/Facebook_vulnerable_to_XSS._Over_70_million_users_are_at_risk.
http://www.informationweek.com/news/security/attacks/231903115
http://www.informationweek.com/news/security/attacks/231903115
http://dl.acm.org/citation.cfm?id=1784707.1784768

www.manaraa.com

92

[36] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks with browser-enforced

embedded policies,” in WWW, C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and

P. J. Shenoy, Eds. ACM, 2007, pp. 601–610.

[37] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna, “Cross site

scripting prevention with dynamic data tainting and static analysis,” in NDSS. The

Internet Society, 2007.

[38] E. Athanasopoulos, V. Pappas, and E. Markatos, “Code-injection attacks in browsers

supporting policies,” in Proceedings of the 2nd Workshop on Web 2.0 Security & Privacy

(W2SP), 2009.

[39] M. J. Stephen, P. P. Reddy, C. D. Naidu, and C. Rajesh, “Prevention of cross site scripting

with E-Guard algorithm,” International Journal of Computer Applications, vol. 22, no. 5,

pp. 30–34, May 2011, published by Foundation of Computer Science.

[40] Y. Nadji, P. Saxena, and D. Song, “Document structure integrity: A robust basis for

cross-site scripting defense,” in NDSS, 2009.

[41] M. Ter Louw and V. Venkatakrishnan, “BLUEPRINT: Robust prevention of cross-site

scripting attacks for existing browsers,” in Security and Privacy, 2009 30th IEEE Sympo-

sium on, May 2009, pp. 331 –346.

[42] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting web

application vulnerabilities (short paper),” in Proceedings of the 2006 IEEE Symposium

on Security and Privacy, ser. SP ’06. Washington, DC, USA: IEEE Computer Society,

2006, pp. 258–263. [Online]. Available: http://dx.doi.org/10.1109/SP.2006.29

[43] M. V. Gundy and H. Chen, “Noncespaces: Using randomization to enforce information

flow tracking and thwart cross-site scripting attacks,” in NDSS, 2009.

[44] K. Sen and G. Agha, “CUTE and jCUTE: concolic unit testing and explicit path

model-checking tools,” in Proceedings of the 18th international conference on Computer

http://dx.doi.org/10.1109/SP.2006.29

www.manaraa.com

93

Aided Verification, ser. CAV’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 419–423.

[Online]. Available: http://dx.doi.org/10.1007/11817963 38

[45] “2012 has delivered her frist giant data breach.” [On-

line]. Available: http://www.teamshatter.com/topics/general/team-shatter-exclusive/

2012-has-delivered-her-first-giant-data-breach

[46] “Yahoo hack leaks 453,000 voice passwords.” [Online]. Available: http://www.

informationweek.com/news/security/attacks/240003587

[47] “Linkedin investigating user account password breach.” [On-

line]. Available: http://searchsecurity.techtarget.com/news/2240151334/

LinkedIn-investigating-user-account-password-breach

[48] “Music site last.fm joins the password-leak parade.” [Online]. Available: http://www.

pcworld.com/article/257178/music site lastfm joins the passwordleak parade.html

[49] “Some eharmony user information stolen: An ancillary advice site that uses eharmony

user names and passwords was hacked using an sql injection vulnerability.” [Online].

Available: http://news.cnet.com/8301-1009 3-20031460-83.html

[50] “Formspring disables user passwords in security breach.” [On-

line]. Available: http://news.cnet.com/8301-1009 3-57469944-83/

formspring-disables-user-passwords-in-security-breach/

[51] “National vulnerability database.” [Online]. Available: http://nvd.nist.gov/home.cfm

[52] “National vulnerability database, cve-2001-1460: Sql injection vulnerability in

article.php in postnuke 0.62 through 0.64 allows remote attackers to bypass

authentication via the user parameter.” accesssed: 2012. [Online]. Available:

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2001-1460

[53] “National vulnerability database, cve-1999-1167: Cross-site scripting vulnerability in third

voice web annotation utility allows remote users to read sensitive data and generate fake

http://dx.doi.org/10.1007/11817963_38
http://www.teamshatter.com/topics/general/team-shatter-exclusive/2012-has-delivered-her-first-giant-data-breach
http://www.teamshatter.com/topics/general/team-shatter-exclusive/2012-has-delivered-her-first-giant-data-breach
http://www.informationweek.com/news/security/attacks/240003587
http://www.informationweek.com/news/security/attacks/240003587
http://searchsecurity.techtarget.com/news/2240151334/LinkedIn-investigating-user-account-password-breach
http://searchsecurity.techtarget.com/news/2240151334/LinkedIn-investigating-user-account-password-breach
http://www.pcworld.com/article/257178/music_site_lastfm_joins_the_passwordleak_parade.html
http://www.pcworld.com/article/257178/music_site_lastfm_joins_the_passwordleak_parade.html
http://news.cnet.com/8301-1009_3-20031460-83.html
http://news.cnet.com/8301-1009_3-57469944-83/formspring-disables-user-passwords-in-security-breach/
http://news.cnet.com/8301-1009_3-57469944-83/formspring-disables-user-passwords-in-security-breach/
http://nvd.nist.gov/home.cfm
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2001-1460

www.manaraa.com

94

web pages for other third voice users by injecting malicious javascript into an annotation.”

[Online]. Available: http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-1999-1167

[54] U. S. C. E. R. Team, “Vulnerability note database: Vulnernability note vu#672683.”

[Online]. Available: http://www.kb.cert.org/vuls/id/672683

[55] ——, “Vulnerability note database: Vulnernability note vu#642339.” [Online]. Available:

http://www.kb.cert.org/vuls/id/642239

[56] ——, “Vulnerability note database: Vulnernability note vu#560659.” [Online]. Available:

http://www.kb.cert.org/vuls/id/560659

[57] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web vulnerability scanning

tools for SQL injection and XSS attacks,” in PRDC. IEEE Computer Society, 2007, pp.

365–372.

[58] N. Antunes and M. Vieira, “Benchmarking vulnerability detection tools for web services,”

in Web Services (ICWS), 2010 IEEE International Conference on. IEEE, 2010, pp.

203–210.

[59] D. Kindy and A. Pathan, “A survey on sql injection: Vulnerabilities, attacks, and preven-

tion techniques,” in Consumer Electronics (ISCE), 2011 IEEE 15th International Sympo-

sium on, June 2011, pp. 468 –471.

[60] R. Johari and P. Sharma, “A survey on web application vulnerabilities (sqlia, xss) ex-

ploitation and security engine for sql injection,” in Communication Systems and Network

Technologies (CSNT), 2012 International Conference on, may 2012, pp. 453 –458.

[61] D. Jayamsakthi Shanmugam, “Cross site scripting-latest developments and solutions: A

survey,” Int. J. Open Problems Compt. Math, vol. 1, no. 2, 2008.

[62] A. B. M. Ali, A. I. Shakhatreh, M. S. Abdullah, and J. Alostad, “Sql-injection

vulnerability scanning tool for automatic creation of sql-injection attacks,” Procedia

Computer Science, vol. 3, no. 0, pp. 453 – 458, 2011, ¡ce:title¿World Conference on

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-1999-1167
http://www.kb.cert.org/vuls/id/672683
http://www.kb.cert.org/vuls/id/642239
http://www.kb.cert.org/vuls/id/560659

www.manaraa.com

95

Information Technology¡/ce:title¿. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S1877050910004515

[63] A. Ciampa, C. A. Visaggio, and M. Di Penta, “A heuristic-based approach for detecting sql-

injection vulnerabilities in web applications,” in Proceedings of the 2010 ICSE Workshop

on Software Engineering for Secure Systems, ser. SESS ’10. New York, NY, USA: ACM,

2010, pp. 43–49. [Online]. Available: http://doi.acm.org/10.1145/1809100.1809107

[64] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “Sqlprob: a proxy-based architecture

towards preventing sql injection attacks,” in Proceedings of the 2009 ACM symposium on

Applied Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp. 2054–2061.

[Online]. Available: http://doi.acm.org/10.1145/1529282.1529737

[65] Z. Su and G. Wassermann, “The essence of command injection attacks in web

applications,” in Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, ser. POPL ’06. New York, NY, USA: ACM, 2006,

pp. 372–382. [Online]. Available: http://doi.acm.org/10.1145/1111037.1111070

[66] X. Li, W. Yan, and Y. Xue, “Sentinel: securing database from logic flaws in web

applications,” in Proceedings of the second ACM conference on Data and Application

Security and Privacy, ser. CODASPY ’12. New York, NY, USA: ACM, 2012, pp. 25–36.

[Online]. Available: http://doi.acm.org/10.1145/2133601.2133605

[67] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static detection of web

application vulnerabilities,” New York, NY, USA, pp. 27–36, 2006. [Online]. Available:

http://doi.acm.org/10.1145/1134744.1134751

[68] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “Swap: Mitigating xss attacks

using a reverse proxy,” in Software Engineering for Secure Systems, 2009. SESS ’09. ICSE

Workshop on, may 2009, pp. 33 –39.

[69] E. Athanasopoulos, V. Pappas, A. Krithinakis, S. Ligouras, E. P. Markatos, and

T. Karagiannis, “xjs: practical xss prevention for web application development,” in

http://www.sciencedirect.com/science/article/pii/S1877050910004515
http://www.sciencedirect.com/science/article/pii/S1877050910004515
http://doi.acm.org/10.1145/1809100.1809107
http://doi.acm.org/10.1145/1529282.1529737
http://doi.acm.org/10.1145/1111037.1111070
http://doi.acm.org/10.1145/2133601.2133605
http://doi.acm.org/10.1145/1134744.1134751

www.manaraa.com

96

Proceedings of the 2010 USENIX conference on Web application development, ser.

WebApps’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 13–13. [Online].

Available: http://dl.acm.org/citation.cfm?id=1863166.1863179

[70] P. Bisht and V. N. Venkatakrishnan, “XSS-GUARD: Precise dynamic prevention

of cross-site scripting attacks,” in Proceedings of the 5th international conference

on Detection of Intrusions and Malware, and Vulnerability Assessment, ser. DIMVA

’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 23–43. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-70542-0 2

[71] C. Kruegel, G. Vigna, and W. Robertson, “A multi-model approach to the detection of

web-based attacks,” Comput. Netw., vol. 48, no. 5, pp. 717–738, Aug. 2005. [Online].

Available: http://dx.doi.org/10.1016/j.comnet.2005.01.009

[72] M. Johns, B. Engelmann, and J. Posegga, “Xssds: Server-side detection of cross-site

scripting attacks,” in Proceedings of the 2008 Annual Computer Security Applications

Conference, ser. ACSAC ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp.

335–344. [Online]. Available: http://dx.doi.org/10.1109/ACSAC.2008.36

[73] M. Rice and S. Kulhari, “A survey of static variable ordering heuristics for efficient

bdd/mdd construction.” Technical report, UC Riverside, Tech. Rep., 2008.

[74] M. Johns, “Sessionsafe: implementing xss immune session handling,” in Proceedings

of the 11th European conference on Research in Computer Security, ser. ESORICS’06.

Berlin, Heidelberg: Springer-Verlag, 2006, pp. 444–460. [Online]. Available: http:

//dx.doi.org/10.1007/11863908 27

[75] H. Shahriar and M. Zulkernine, “S2xs2: A server side approach to automatically

detect xss attacks,” in Proceedings of the 2011 IEEE Ninth International Conference

on Dependable, Autonomic and Secure Computing, ser. DASC ’11. Washington,

DC, USA: IEEE Computer Society, 2011, pp. 7–14. [Online]. Available: http:

//dx.doi.org/10.1109/DASC.2011.26

http://dl.acm.org/citation.cfm?id=1863166.1863179
http://dx.doi.org/10.1007/978-3-540-70542-0_2
http://dx.doi.org/10.1016/j.comnet.2005.01.009
http://dx.doi.org/10.1109/ACSAC.2008.36
http://dx.doi.org/10.1007/11863908_27
http://dx.doi.org/10.1007/11863908_27
http://dx.doi.org/10.1109/DASC.2011.26
http://dx.doi.org/10.1109/DASC.2011.26

www.manaraa.com

97

[76] M. Huth and M. Ryan, Logic in Computer Science: Modelling and reasoning about systems.

Cambridge University Press Cambridge,, UK, 2004, vol. 2.

[77] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar, and M. D. Ernst, “Finding

bugs in dynamic web applications,” in ISSTA, 2008, pp. 261–272.

[78] D. Ray and J. Ligatti, “Defining code-injection attacks,” SIGPLAN Not., vol. 47, no. 1,

pp. 179–190, Jan. 2012. [Online]. Available: http://doi.acm.org/10.1145/2103621.2103678

[79] Y. Wu and J. Offutt, “Modeling and testing web-based applications,” George Mason Uni-

versity, Tech. Rep., 2002.

[80] A. S Miner, “Implicit gspn reachability set generation using decision diagrams,” Perfor-

mance Evaluation, vol. 56, no. 1, pp. 145–165, 2004.

[81] C. Anley, “Advanced sql injection in sql server applications,” White paper, Next Generation

Security Software Ltd, 2002.

[82] ——, “(more) advanced sql injection in sql server applications,” White paper, Next Gen-

eration Security Software Ltd, 2002.

[83] G. Ollmann, “Second-order code injection attacks,” NGS Insight Security Research, 2004.

http://doi.acm.org/10.1145/2103621.2103678

	2013
	Model checking techniques for vulnerability analysis of Web applications
	Michelle Elaine Ruse
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 First Order SQL Injection Attacks
	1.2 First Order Cross-Site Scripting Attacks
	1.3 Contributions
	1.4 Organization

	2. CLASSIFICATION OF FIRST ORDER RELATED WORKS
	2.1 Introduction
	2.2 Classification of First Order Vulnerability and Attack detection methods
	2.2.1 Detection Type
	2.2.2 Detection Method
	2.2.3 Granularity
	2.2.4 Location
	2.2.5 Level of Automation
	2.2.6 Test Case Source

	2.3 Classifications of related works
	2.3.1 Testing
	2.3.2 Program analysis
	2.3.3 Model checking
	2.3.4 Code re-write
	2.3.5 Structural matching
	2.3.6 Taint analysis
	2.3.7 Proxy
	2.3.8 Browser-based
	2.3.9 Penetration testing
	2.3.10 Blackbox testing
	2.3.11 Other techniques

	2.4 Summary
	2.4.1 Classifications
	2.4.2 Techniques
	2.4.3 Conclusions

	3. ANALYSIS & DETECTION OF SQL INJECTION VULNERABILITIES VIA AUTOMATIC TEST CASE GENERATION OF PROGRAMS
	3.1 Introduction
	3.2 A method for detecting SQL injection vulnerabilities
	3.2.1 Translating SQL query conditions to C-programs
	3.2.2 Application of CREST
	3.2.3 Causal set detection: reductions

	3.3 Method evaluation
	3.4 Conclusions

	4. DETECTING CROSS-SITE SCRIPTING VULNERABILITY USING CONCOLIC TESTING
	4.1 Introduction to Cross-Site Scripting
	4.2 A method for detecting Cross-Site Scripting vulnerabilities and implementing attack prevention
	4.2.1 Preprocessing
	4.2.2 Translation
	4.2.3 Testing for determining vulnerable outputs
	4.2.4 Instrumentation for detecting Cross-Site Scripting attacks

	4.3 Case Studies
	4.4 Conclusions

	5. CONCLUSIONS AND FUTURE WORK
	5.1 Summary and contributions
	5.2 Extension to Second Order Injection Attacks

	BIBLIOGRAPHY

